Wavefunction collapse driven by non-Hermitian disturbance (2404.16445v1)
Abstract: In the context of the measurement problem, we propose to model the interaction between a quantum particle and an "apparatus" through a non-Hermitian Hamiltonian term. We simulate the time evolution of a normalized quantum state split into two spin components (via a Stern-Gerlach experiment) and that undergoes a wave-function collapse driven by a non-Hermitian Hatano-Nelson Hamiltonian. We further analyze how the strength and other parameters of the non-Hermitian perturbation influence the time-to-collapse of the wave function obtained under a Schr\"{o}dinger-type evolution. We finally discuss a thought experiment where manipulation of the apparatus could challenge standard quantum mechanics predictions.
- A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777 (1935).
- N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 48, 696 (1935).
- J. S. Bell, “On the einstein podolsky rosen paradox,” Physics Physique Fizika 1, 195 (1964).
- E. P. Wigner, “Review of the quantum-mechanical measurement problem,” in Science, Computers, and the Information Onslaught, edited by D. M. Kerr, K. Braithwaite, N. Metropolis, D. H. Sharp, and G.-C. Rota (Academic Press, 1984) pp. 63–82.
- F. Laloë, “Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems,” American Journal of Physics 69, 655 (2001).
- J. S. Bell and A. Aspect, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, 2nd ed. (Cambridge University Press, 2004).
- J. Bell, “Against ‘measurement’,” Physics World 3, 33 (1990).
- N. D. Mermin, “Hidden variables and the two theorems of john bell,” Rev. Mod. Phys. 65, 803 (1993).
- J. R. Hance and S. Hossenfelder, “What does it take to solve the measurement problem?” Journal of Physics Communications 6, 102001 (2022).
- N. Ormrod, V. Vilasini, and J. Barrett, “Which theories have a measurement problem?” (2023), arXiv:2303.03353 [quant-ph] .
- G. C. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Physical Review D 34, 470 (1986).
- G. C. Ghirardi, P. Pearle, and A. Rimini, “Markov processes in hilbert space and continuous spontaneous localization of systems of identical particles,” Phys. Rev. A 42, 78 (1990).
- A. Bassi and G. Ghirardi, “Dynamical reduction models,” Physics Reports 379, 257 (2003).
- P. Pearle, “Combining stochastic dynamical state-vector reduction with spontaneous localization,” Physical Review A 39, 2277 (1989).
- F. Laloë, “Quantum collapse dynamics with attractive densities,” Physical Review A 99, 052111 (2019).
- L. Diósi, “Models for universal reduction of macroscopic quantum fluctuations,” Phys. Rev. A 40, 1165 (1989).
- R. Penrose, “On gravity’s role in quantum state reduction,” General Relativity and Gravitation 28, 581 (1996).
- A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, “Models of wave-function collapse, underlying theories, and experimental tests,” Rev. Mod. Phys. 85, 471 (2013).
- F. Laloë, “A model of quantum collapse induced by gravity,” The European Physical Journal D 74, 25 (2020).
- F. Laloë, “Gravitational quantum collapse in dilute systems,” Comptes Rendus. Physique 23, 27 (2022).
- S. Donadi, K. Piscicchia, C. Curceanu, L. Diósi, M. Laubenstein, and A. Bassi, “Underground test of gravity-related wave function collapse,” Nature Physics 17, 74 (2021).
- I. J. Arnquist, F. T. Avignone, A. S. Barabash, C. J. Barton, K. H. Bhimani, E. Blalock, B. Bos, M. Busch, M. Buuck, T. S. Caldwell, Y.-D. Chan, C. D. Christofferson, P.-H. Chu, M. L. Clark, C. Cuesta, J. A. Detwiler, Y. Efremenko, H. Ejiri, S. R. Elliott, G. K. Giovanetti, M. P. Green, J. Gruszko, I. S. Guinn, V. E. Guiseppe, C. R. Haufe, R. Henning, D. Hervas Aguilar, E. W. Hoppe, A. Hostiuc, I. Kim, R. T. Kouzes, T. E. Lannen V., A. Li, A. M. Lopez, J. M. López-Castaño, E. L. Martin, R. D. Martin, R. Massarczyk, S. J. Meijer, T. K. Oli, G. Othman, L. S. Paudel, W. Pettus, A. W. P. Poon, D. C. Radford, A. L. Reine, K. Rielage, N. W. Ruof, D. Tedeschi, R. L. Varner, S. Vasilyev, J. F. Wilkerson, C. Wiseman, W. Xu, C.-H. Yu, and B. X. Zhu (Majorana Collaboration), “Search for spontaneous radiation from wave function collapse in the majorana demonstrator,” Phys. Rev. Lett. 129, 080401 (2022).
- S. Donadi, L. Ferialdi, and A. Bassi, “Collapse dynamics are diffusive,” Phys. Rev. Lett. 130, 230202 (2023).
- N. Hatano and D. R. Nelson, “Vortex pinning and non-hermitian quantum mechanics,” Phys. Rev. B 56, 8651 (1997).
- N. Hatano and D. R. Nelson, “Non-hermitian delocalization and eigenfunctions,” Phys. Rev. B 58, 8384 (1998).
- N. Hatano and D. R. Nelson, “Localization transitions in non-hermitian quantum mechanics,” Phys. Rev. Lett. 77, 570 (1996).
- T. Orito and K.-I. Imura, “Entanglement dynamics in the many-body hatano-nelson model,” Phys. Rev. B 108, 214308 (2023).
- T. Orito and K.-I. Imura, “Unusual wave-packet spreading and entanglement dynamics in non-hermitian disordered many-body systems,” Phys. Rev. B 105, 024303 (2022).
- Y. Takane, S. Kobayashi, and K.-I. Imura, “Probability conservation and localization in a one-dimensional non-hermitian system,” Journal of the Physical Society of Japan 92, 104705 (2023).
- F. Laloë, W. J. Mullin, and P. Pearle, “Heating of trapped ultracold atoms by collapse dynamics,” Phys. Rev. A 90, 052119 (2014).
- S. Machluf, Y. Japha, and R. Folman, “Coherent stern–gerlach momentum splitting on an atom chip,” Nature Communications 4, 2424 (2013).
- Y. Margalit, O. Dobkowski, Z. Zhou, O. Amit, Y. Japha, S. Moukouri, D. Rohrlich, A. Mazumdar, S. Bose, C. Henkel, and R. Folman, “Realization of a complete stern-gerlach interferometer: Toward a test of quantum gravity,” Science Advances 7, eabg2879 (2021), https://www.science.org/doi/pdf/10.1126/sciadv.abg2879 .
- M. Keil, S. Machluf, Y. Margalit, Z. Zhou, O. Amit, O. Dobkowski, Y. Japha, S. Moukouri, D. Rohrlich, Z. Binstock, Y. Bar-Haim, M. Givon, D. Groswasser, Y. Meir, and R. Folman, “Stern-gerlach interferometry with the atom chip,” in Molecular Beams in Physics and Chemistry: From Otto Stern’s Pioneering Exploits to Present-Day Feats, edited by B. Friedrich and H. Schmidt-Böcking (Springer International Publishing, Cham, 2021) pp. 263–301.
- Y. Japha and R. Folman, “Quantum uncertainty limit for stern-gerlach interferometry with massive objects,” Phys. Rev. Lett. 130, 113602 (2023).
- A. Aspect, P. Grangier, and G. Roger, “Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: A new violation of bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982a).
- A. Aspect, J. Dalibard, and G. Roger, “Experimental test of bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804 (1982b).
- W. D. Heiss, “The physics of exceptional points,” Journal of Physics A: Mathematical and Theoretical 45, 444016 (2012).
- I. Rotter and J. P. Bird, “A review of progress in the physics of open quantum systems: theory and experiment,” Reports on Progress in Physics 78, 114001 (2015).
- L. E. F. Foa Torres, “Perspective on topological states of non-hermitian lattices,” Journal of Physics: Materials 3, 014002 (2020).
- L. J. Fernández-Alcázar and H. M. Pastawski, “Decoherent time-dependent transport beyond the Landauer-B\”uttiker formulation: A quantum-drift alternative to quantum jumps,” Physical Review A 91, 022117 (2015).
- G. Singh, R. K. Singh, and S. Banerjee, “Embedding of a non-hermitian hamiltonian to emulate the von neumann measurement scheme,” Journal of Physics A: Mathematical and Theoretical 57, 035301 (2023a).
- G. Singh, R. K. Singh, and S. Banerjee, “Emulating the measurement postulates of quantum mechanics via non-hermitian hamiltonian,” (2023b), arXiv:2302.01898 [quant-ph] .
Collections
Sign up for free to add this paper to one or more collections.