Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When does a bent concatenation not belong to the completed Maiorana-McFarland class? (2404.16220v1)

Published 24 Apr 2024 in cs.IT, cs.CR, cs.DM, math.CO, and math.IT

Abstract: Every Boolean bent function $f$ can be written either as a concatenation $f=f_1||f_2$ of two complementary semi-bent functions $f_1,f_2$; or as a concatenation $f=f_1||f_2||f_3||f_4$ of four Boolean functions $f_1,f_2,f_3,f_4$, all of which are simultaneously bent, semi-bent, or 5-valued spectra-functions. In this context, it is essential to ask: When does a bent concatenation $f$ (not) belong to the completed Maiorana-McFarland class $\mathcal{M}#$? In this article, we answer this question completely by providing a full characterization of the structure of $\mathcal{M}$-subspaces for the concatenation of the form $f=f_1||f_2$ and $f=f_1||f_2||f_3||f_4$, which allows us to specify the necessary and sufficient conditions so that $f$ is outside $\mathcal{M}#$. Based on these conditions, we propose several explicit design methods of specifying bent functions outside $\mathcal{M}#$ in the special case when $f=g||h||g||(h+1)$, where $g$ and $h$ are bent functions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. A. Canteaut and P. Charpin, “Decomposing bent functions,” IEEE Transactions on Information Theory, vol. 49, no. 8, pp. 2004–2019, 2003.
  2. C. Carlet and S. Mesnager, “Four decades of research on bent functions,” Designs, Codes and Cryptography, vol. 78, no. 1, pp. 5–50, Jan 2016.
  3. J. F. Dillon, “Elementary Hadamard difference sets,” Ph.D. dissertation, University of Maryland, 1974.
  4. S. Hodžić, E. Pasalic, and Y. Wei, “A general framework for secondary constructions of bent and plateaued functions,” Designs, Codes and Cryptography, vol. 88, no. 10, pp. 2007–2035, Oct 2020.
  5. E. P. Korsakova, “Graph classification for quadratic bent functions in 6666 variables,” Diskretn. Anal. Issled. Oper., vol. 20, no. 5, pp. 45–57, 2013.
  6. R. L. McFarland, “A family of difference sets in non-cyclic groups,” Journal of Combinatorial Theory, Series A, vol. 15, no. 1, pp. 1–10, 1973.
  7. E. Pasalic, A. Bapić, F. Zhang, and Y. Wei, “Explicit infinite families of bent functions outside the completed Maiorana–McFarland class,” Designs, Codes and Cryptography, vol. 91, no. 7, pp. 2365–2393, Jul 2023.
  8. E. Pasalic, A. Polujan, S. Kudin, and F. Zhang, “ Design and analysis of bent functions using ℳℳ\mathcal{M}caligraphic_M-subspaces,” To appear in IEEE Transactions on Information Theory, pp. 1–1, 2024.
  9. A. Polujan, E. Pasalic, S. Kudin, and F. Zhang, “Bent functions satisfying the dual bent condition and permutations with the (𝒜m)subscript𝒜𝑚(\mathcal{A}_{m})( caligraphic_A start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) property,” Submitted, 2023.
  10. A. Polujan and A. Pott, “Cubic bent functions outside the completed Maiorana-McFarland class,” Designs, Codes and Cryptography, vol. 88, no. 9, pp. 1701–1722, Sep 2020.
  11. F. Zhang, E. Pasalic, A. Bapić, and B. Wang, “Constructions of several special classes of cubic bent functions outside the completed Maiorana-McFarland class,” Information and Computation, p. 105149, 2024.
  12. Y. Zheng and X.-M. Zhang, “On plateaued functions,” IEEE Transactions on Information Theory, vol. 47, no. 3, pp. 1215–1223, 2001.

Summary

We haven't generated a summary for this paper yet.