SU(N) magnetism with ultracold molecules (2404.15957v3)
Abstract: Quantum systems with SU($N$) symmetry are paradigmatic settings for quantum many-body physics. They have been studied for the insights they provide into complex materials and their ability to stabilize exotic ground states. Ultracold alkaline-earth atoms were predicted to exhibit SU($N$) symmetry for $N=2I+1=1,2,\ldots,10$, where $I$ is the nuclear spin. Subsequent experiments have revealed rich many-body physics. However, alkaline-earth atoms realize this symmetry only for fermions with repulsive interactions. In this paper, we predict that ultracold molecules shielded from destructive collisions with static electric fields or microwaves exhibit SU($N$) symmetry, which holds because deviations of the s-wave scattering length from the spin-free values are only about 3\% for CaF with static-field shielding and are estimated to be even smaller for bialkali molecules. They open the door to $N$ as large as $32$ for bosons and $36$ for fermions. They offer important features unachievable with atoms, including bosonic systems and attractive interactions.
- M. A. Cazalilla, A. Ho, and M. Ueda, Ultracold gases of ytterbium: ferromagnetism and Mott states in an SU(6) Fermi system, New Journal of Physics 11, 103033 (2009).
- C. Wu, J.-P. Hu, and S.-C. Zhang, Exact SO(5) symmetry in the spin-3/2 fermionic system, Physical Review Letters 91, 186402 (2003).
- M. A. Cazalilla and A. M. Rey, Ultracold Fermi gases with emergent SU(N𝑁Nitalic_N) symmetry, Reports on Progress in Physics 77, 124401 (2014).
- M. Hermele, V. Gurarie, and A. M. Rey, Mott insulators of ultracold fermionic alkaline earth atoms: Underconstrained magnetism and chiral spin liquid, Physical Review Letters 103, 135301 (2009).
- G. V. Chen and C. Wu, Multiflavor Mott insulators in quantum materials and ultracold atoms, npj Quantum Materials 9, 1 (2024).
- K. Heyde, Basic ideas and concepts in nuclear physics: an introductory approach (CRC Press, 2020).
- C. P. Koch, M. Lemeshko, and D. Sugny, Quantum control of molecular rotation, Reviews of Modern Physics 91, 035005 (2019).
- G. Quéméner and P. S. Julienne, Ultracold molecules under control!, Chemical Reviews 112, 4949 (2012).
- M. L. Wall, K. R. A. Hazzard, and A. M. Rey, From atomic to mesoscale: The role of quantum coherence in systems of various complexities (World Scientific, 2015) Chap. Quantum magnetism with ultracold molecules.
- S. L. Cornish, M. R. Tarbutt, and K. R. A. Hazzard, Quantum computation and quantum simulation with ultracold molecules, arXiv preprint arXiv:2401.05086 .
- A. V. Avdeenkov, M. Kajita, and J. L. Bohn, Suppression of inelastic collisions of polar Σ1superscriptΣ1{}^{1}\Sigmastart_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT roman_Σ state molecules in an electrostatic field, Physical Review A 73, 022707 (2006).
- G. Wang and G. Quéméner, Tuning ultracold collisions of excited rotational dipolar molecules, New Journal of Physics 17, 035015 (2015).
- M. L. González-Martínez, J. L. Bohn, and G. Quéméner, Adimensional theory of shielding in ultracold collisions of dipolar rotors, Physical Review A 96, 032718 (2017).
- B. Mukherjee and J. M. Hutson, Controlling collisional loss and scattering lengths of ultracold dipolar molecules with static electric fields, Physical Review Research 6, 013145 (2024).
- T. Karman and J. M. Hutson, Microwave shielding of ultracold polar molecules, Physical Review Letters 121, 163401 (2018).
- L. Lassablière and G. Quéméner, Controlling the scattering length of ultracold dipolar molecules, Physical Review Letters 121, 163402 (2018).
- A. Rapp, G. Zaránd, C. Honerkamp, and W. Hofstetter, Color superfluidity and “baryon” formation in ultracold fermions, Physical Review Letters 98, 160405 (2007).
- K. Inaba and S.-I. Suga, Finite-temperature properties of attractive three-component fermionic atoms in optical lattices, Physical Review A 80, 041602 (2009).
- A. Koga and H. Yanatori, Spontaneously symmetry-breaking states in the attractive SU(N𝑁Nitalic_N) Hubbard model, Journal of the Physical Society of Japan 86, 034702 (2017).
- Z. Maassarani, Exact integrability of the su(n)𝑠𝑢𝑛su(n)italic_s italic_u ( italic_n ) Hubbard model, Modern physics letters B 12, 51 (1998).
- A. P. Polychronakos and K. Sfetsos, Ferromagnetic phase transitions in SU(N𝑁Nitalic_N), Nuclear Physics B 996, 116353 (2023).
- S. Yi and L. You, Trapped atomic condensates with anisotropic interactions, Physical Review A 61, 041604(R) (2000).
- J. Aldegunde and J. M. Hutson, Hyperfine structure of alkali-metal diatomic molecules, Physical Review A 96, 042506 (2017).
- B. Mukherjee, J. M. Hutson, and K. R. A. Hazzard, https://collections.durham.ac.uk/files/r1hq37vn60c, supporting data for “SU(N𝑁Nitalic_N) magnetism with ultracold molecules”.
- G. F. Gribakin and V. V. Flambaum, Calculation of the scattering length in atomic collisions using the semiclassical approximation, Physical Review A 48, 546 (1993).