Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D Freehand Ultrasound using Visual Inertial and Deep Inertial Odometry for Measuring Patellar Tracking (2404.15847v1)

Published 24 Apr 2024 in physics.med-ph and cs.CV

Abstract: Patellofemoral joint (PFJ) issues affect one in four people, with 20% experiencing chronic knee pain despite treatment. Poor outcomes and pain after knee replacement surgery are often linked to patellar mal-tracking. Traditional imaging methods like CT and MRI face challenges, including cost and metal artefacts, and there's currently no ideal way to observe joint motion without issues such as soft tissue artefacts or radiation exposure. A new system to monitor joint motion could significantly improve understanding of PFJ dynamics, aiding in better patient care and outcomes. Combining 2D ultrasound with motion tracking for 3D reconstruction of the joint using semantic segmentation and position registration can be a solution. However, the need for expensive external infrastructure to estimate the trajectories of the scanner remains the main limitation to implementing 3D bone reconstruction from handheld ultrasound scanning clinically. We proposed the Visual-Inertial Odometry (VIO) and the deep learning-based inertial-only odometry methods as alternatives to motion capture for tracking a handheld ultrasound scanner. The 3D reconstruction generated by these methods has demonstrated potential for assessing the PFJ and for further measurements from free-hand ultrasound scans. The results show that the VIO method performs as well as the motion capture method, with average reconstruction errors of 1.25 mm and 1.21 mm, respectively. The VIO method is the first infrastructure-free method for 3D reconstruction of bone from wireless handheld ultrasound scanning with an accuracy comparable to methods that require external infrastructure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. K. K. Petersen, O. Simonsen, M. B. Laursen, T. A. Nielsen, S. Rasmussen, and L. Arendt-Nielsen, “Chronic postoperative pain after primary and revision total knee arthroplasty,” The Clinical journal of pain, vol. 31, no. 1, pp. 1–6, 2015.
  2. P. J. van der Wees, J. J. Wammes, R. P. Akkermans, J. Koetsenruijter, G. P. Westert, A. van Kampen, G. Hannink, M. de Waal-Malefijt, and B. W. Schreurs, “Patient-reported health outcomes after total hip and knee surgery in a dutch university hospital setting: results of twenty years clinical registry,” BMC musculoskeletal disorders, vol. 18, no. 1, pp. 1–10, 2017.
  3. C. Belvedere, A. Ensini, A. Leardini, V. Dedda, A. Feliciangeli, F. Cenni, A. Timoncini, P. Barbadoro, and S. Giannini, “Tibio-femoral and patello-femoral joint kinematics during navigated total knee arthroplasty with patellar resurfacing,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 22, pp. 1719–1727, 2014.
  4. R. S. Pulavarti, V. V. Raut, and G. J. McLauchlan, “Patella denervation in primary total knee arthroplasty–a randomized controlled trial with 2 years of follow-up,” The Journal of Arthroplasty, vol. 29, no. 5, pp. 977–981, 2014.
  5. L. N. Nazarian, “The top 10 reasons musculoskeletal sonography is an important complementary or alternative technique to mri,” American Journal of Roentgenology, vol. 190, no. 6, pp. 1621–1626, 2008.
  6. E. Świątek-Najwer, K. Otto, P. Krowicki, K. Krysztoforski, P. Keppler, and J. Kozak, “3d bone shape modelling basing on dataset recorded by ultrasound free-hand navigated probe,” in Information Technologies in Biomedicine, Volume 4, E. Piętka, J. Kawa, and W. Wieclawek, Eds.   Cham: Springer International Publishing, 2014, pp. 45–56.
  7. R. Jia, P. Monk, D. Murray, J. A. Noble, and S. Mellon, “CAT & MAUS: A novel system for true dynamic motion measurement of underlying bony structures with compensation for soft tissue movement,” J Biomech, vol. 62, pp. 156–164, 2017.
  8. M. R. Mahfouz, E. E. Abdel Fatah, J. M. Johnson, and R. D. Komistek, “A novel approach to 3d bone creation in minutes,” The Bone & Joint Journal, vol. 103-B, no. 6 Supple A, pp. 81–86, 2021.
  9. W. Kerr, P. Rowe, and S. G. Pierce, “Accurate 3d reconstruction of bony surfaces using ultrasonic synthetic aperture techniques for robotic knee arthroplasty,” Computerized Medical Imaging and Graphics, vol. 58, pp. 23–32, 2017.
  10. A. H. Gee, R. James Housden, P. Hassenpflug, G. M. Treece, and R. W. Prager, “Sensorless freehand 3d ultrasound in real tissue: Speckle decorrelation without fully developed speckle,” Medical Image Analysis, vol. 10, no. 2, pp. 137–149, 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361841505000708
  11. R. Prevost, M. Salehi, S. Jagoda, N. Kumar, J. Sprung, A. Ladikos, R. Bauer, O. Zettinig, and W. Wein, “3D freehand ultrasound without external tracking using deep learning,” Medical Image Analysis, vol. 48, pp. 187–202, Aug. 2018.
  12. R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.
  13. C. Chen, X. Lu, A. Markham, and N. Trigoni, “IONet: Learning to Cure the Curse of Drift in Inertial Odometry,” 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 6468–6476, 2018.
  14. W. Liu, D. Caruso, E. Ilg, J. Dong, A. I. Mourikis, K. Daniilidis, V. Kumar, and J. Engel, “TLIO: Tight learned inertial odometry,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5653–5660, 2020.
  15. R. Buchanan, M. Camurri, F. Dellaert, and M. Fallon, “Learning inertial odometry for dynamic legged robot state estimation,” in Proceedings of the 5th Conference on Robot Learning, vol. 164, 2021, pp. 1575–1584.
  16. D. Wisth, M. Camurri, and M. Fallon, “Vilens: Visual, inertial, lidar, and leg odometry for all-terrain legged robots,” IEEE Transactions on Robotics, vol. 39, no. 1, pp. 309–326, 2022.
  17. F. Dellaert, “Factor Graphs and GTSAM: A Hands-on Introduction,” Georgia Institute of Technology, Tech. Rep. September, 2012. [Online]. Available: https://smartech.gatech.edu/handle/1853/45226
  18. C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold Preintegration for Real-Time Visual-Inertial Odometry,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1–21, 2017.
  19. R. Jia, S. J. Mellon, S. Hansjee, A. P. Monk, D. W. Murray, and J. A. Noble, “Automatic bone segmentation in ultrasound images using local phase features and dynamic programming,” in IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016, pp. 1005–1008.
  20. F. Pomerleau, F. Colas, and R. Siegwart, “A review of point cloud registration algorithms for mobile robotics,” Foundations and Trends in Robotics, vol. 4, pp. 1–104, 05 2015.
  21. F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing ICP Variants on Real-World Data Sets,” Autonomous Robots, vol. 34, no. 3, pp. 133–148, 2013.
  22. Q.-Y. Zhou, J. Park, and V. Koltun, “Open3d: A modern library for 3d data processing,” 2018. [Online]. Available: https://arxiv.org/abs/1801.09847
  23. R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion: Real-time dense surface mapping and tracking,” in 10th IEEE International Symposium on Mixed and Augmented Reality, 2011, pp. 127–136.
  24. M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson Surface Reconstruction,” in Symposium on Geometry Processing, A. Sheffer and K. Polthier, Eds.   The Eurographics Association, 2006.
  25. R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti, C. Stachniss, and A. Kleiner, “On measuring the accuracy of slam algorithms,” Autonomous Robots, vol. 27, no. 4, pp. 387–407, 2009.

Summary

We haven't generated a summary for this paper yet.