Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Supercontinua from integrated gallium nitride waveguides (2404.15712v2)

Published 24 Apr 2024 in physics.optics

Abstract: Supercontinua are broadband spectra that are essential to optical spectroscopy, sensing, imaging, and metrology. They are generated from ultrashort laser pulses through nonlinear frequency conversion in fibers, bulk media, and chip-integrated waveguides. For any generating platform, balancing the competing criteria of strong nonlinearity, transparency, and absence of multiphoton absorption is a key challenge. Here, we explore supercontinuum generation in integrated gallium nitride (GaN) waveguides, which combine a high Kerr-nonlinearity, mid-infrared transparency, and a large bandgap that prevents two- and three-photon absorption in the technologically important telecom C-band, where compact erbium-based pump lasers exist. Using this type of laser, we demonstrate tunable dispersive waves and gap-free spectra extending to almost 4 micron in wavelength, relevant to functional group chemical sensing. Additionally, leveraging the material's second-order nonlinearity, we implement on-chip f-2f interferometry to detect the pump laser's carrier-envelope offset frequency, which enables precision metrology. These results demonstrate the versatility of GaN-on-sapphire as a new platform for broadband nonlinear photonics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. John M. Dudley, Goëry Genty and Stéphane Coen “Supercontinuum Generation in Photonic Crystal Fiber” In Reviews of Modern Physics 78.4, 2006, pp. 1135–1184 DOI: 10.1103/RevModPhys.78.1135
  2. “Supercontinuum in Integrated Photonics: Generation, Applications, Challenges, and Perspectives” In Nanophotonics 12.7 De Gruyter, 2023, pp. 1199–1244 DOI: 10.1515/nanoph-2022-0749
  3. Nathalie Picqué and Theodor W. Hänsch “Frequency Comb Spectroscopy” In Nature Photonics 13.3 Nature Publishing Group, 2019, pp. 146–157 DOI: 10.1038/s41566-018-0347-5
  4. “20 Years of Developments in Optical Frequency Comb Technology and Applications” In Communications Physics 2.1 Nature Publishing Group, 2019, pp. 1–16 DOI: 10.1038/s42005-019-0249-y
  5. Scott A. Diddams, Kerry Vahala and Thomas Udem “Optical Frequency Combs: Coherently Uniting the Electromagnetic Spectrum” In Science 369.6501 American Association for the Advancement of Science, 2020, pp. eaay3676 DOI: 10.1126/science.aay3676
  6. “Optical Coherence Tomography” In Science 254.5035 American Association for the Advancement of Science, 1991, pp. 1178–1181 DOI: 10.1126/science.1957169
  7. “An Octave-Spanning Mid-Infrared Frequency Comb Generated in a Silicon Nanophotonic Wire Waveguide” In Nature Communications 6.1 Nature Publishing Group, 2015, pp. 6310 DOI: 10.1038/ncomms7310
  8. “Midinfrared Supercontinuum Generation from 2 to 6 μμ\upmuroman_μm in a Silicon Nanowire” In Optica 2.9 Optica Publishing Group, 2015, pp. 797–802 DOI: 10.1364/OPTICA.2.000797
  9. “Mid-Infrared Octave Spanning Supercontinuum Generation to 8.5 μμ\upmuroman_μm in Silicon-Germanium Waveguides” In Optica 5.4 Optica Publishing Group, 2018, pp. 360–366 DOI: 10.1364/OPTICA.5.000360
  10. “Multifunctional Integrated Photonics in the Mid-Infrared with Suspended AlGaAs on Silicon” In Optica 6.9 Optica Publishing Group, 2019, pp. 1246–1254 DOI: 10.1364/OPTICA.6.001246
  11. “Octave-Spanning Coherent Supercontinuum Generation in an AlGaAs-on-insulator Waveguide” In Optics Letters 45.3 Optica Publishing Group, 2020, pp. 603–606 DOI: 10.1364/OL.45.000603
  12. “GaAs-chip-based Mid-Infrared Supercontinuum Generation” In Light: Science & Applications 12.1 Nature Publishing Group UK London, 2023, pp. 252
  13. “Supercontinuum Generation in Dispersion Engineered Highly Nonlinear (γ𝛾\gammaitalic_γ = 10 /W/m) As2S3 Chalcogenide Planar Waveguide” In Optics Express 16.19 Optica Publishing Group, 2008, pp. 14938–14944 DOI: 10.1364/OE.16.014938
  14. “Ultrabroadband Supercontinuum Generation in a CMOS-compatible Platform” In Optics Letters 37.10 Optica Publishing Group, 2012, pp. 1685–1687 DOI: 10.1364/OL.37.001685
  15. “Ultrabroadband Supercontinuum Generation and Frequency-Comb Stabilization Using On-Chip Waveguides with Both Cubic and Quadratic Nonlinearities” In Physical Review Applied 8.1, 2017, pp. 014025 DOI: 10.1103/PhysRevApplied.8.014025
  16. “Octave-Spanning Supercontinuum Generation in Nanoscale Lithium Niobate Waveguides” In Optics Letters 44.6 Optica Publishing Group, 2019, pp. 1492–1495 DOI: 10.1364/OL.44.001492
  17. “Coherent Two-Octave-Spanning Supercontinuum Generation in Lithium-Niobate Waveguides” In Optics Letters 44.5 Optica Publishing Group, 2019, pp. 1222–1225 DOI: 10.1364/OL.44.001222
  18. “Tantala Kerr Nonlinear Integrated Photonics” In Optica 8.6 Optica Publishing Group, 2021, pp. 811–817
  19. “Visible to Near-Infrared Octave Spanning Supercontinuum Generation in Tantalum Pentoxide (Ta2O5) Air-Cladding Waveguide” In Optics Letters 44.6 Optica Publishing Group, 2019, pp. 1512–1515 DOI: 10.1364/OL.44.001512
  20. “Nonlinear Silicon Photonics on CMOS-compatible Tellurium Oxide” In Photonics Research 8.12 Optica Publishing Group, 2020, pp. 1904–1909 DOI: 10.1364/PRJ.400057
  21. “Supercontinuum Generation in Angle-Etched Diamond Waveguides” In Optics Letters 44.16 Optica Publishing Group, 2019, pp. 4056–4059 DOI: 10.1364/OL.44.004056
  22. “Beyond 100 THz-spanning Ultraviolet Frequency Combs in a Non-Centrosymmetric Crystalline Waveguide” In Nature Communications 10.1 Nature Publishing Group, 2019, pp. 2971 DOI: 10.1038/s41467-019-11034-x
  23. “Visible Blue-to-Red 10  GHz Frequency Comb via on-Chip Triple-Sum-Frequency Generation” In Optics Letters 44.21 Optica Publishing Group, 2019, pp. 5290–5293 DOI: 10.1364/OL.44.005290
  24. “Visible-to-Ultraviolet Frequency Comb Generation in Lithium Niobate Nanophotonic Waveguides” In Nature Photonics Nature Publishing Group, 2024, pp. 1–6 DOI: 10.1038/s41566-023-01364-0
  25. “Continuous Ultraviolet to Blue-Green Astrocomb” In Nature Communications 15.1 Nature Publishing Group, 2024, pp. 1466 DOI: 10.1038/s41467-024-45924-6
  26. “Ultraviolet Astronomical Spectrograph Calibration with Laser Frequency Combs from Nanophotonic Waveguides” In arXiv preprint arXiv:2306.13609, 2023 DOI: 10.48550/arXiv.2306.13609
  27. “Mid-Infrared Frequency Comb via Coherent Dispersive Wave Generation in Silicon Nitride Nanophotonic Waveguides” In Nature Photonics 12.6 Nature Publishing Group, 2018, pp. 330–335 DOI: 10.1038/s41566-018-0144-1
  28. “Ultraviolet to Mid-Infrared Supercontinuum Generation in Single-Crystalline Aluminum Nitride Waveguides” In Optics Letters 45.16 Optical Society of America, 2020, pp. 4499–4502 DOI: 10.1364/OL.398257
  29. “Mid Infrared Gas Spectroscopy Using Efficient Fiber Laser Driven Photonic Chip-Based Supercontinuum” In Nature Communications 10.1 Nature Publishing Group, 2019, pp. 1553 DOI: 10.1038/s41467-019-09590-3
  30. “Nanophotonic Supercontinuum-Based Mid-Infrared Dual-Comb Spectroscopy” In Optica 7.9 Optica Publishing Group, 2020, pp. 1181–1188 DOI: 10.1364/OPTICA.396542
  31. Shuji Nakamura, Takashi Mukai and Masayuki Senoh “Candela-class High-brightness InGaN/AlGaN Double-heterostructure Blue-light-emitting Diodes” In Applied Physics Letters 64.13, 1994, pp. 1687–1689 DOI: 10.1063/1.111832
  32. S.N. Mohammad, A.A. Salvador and H. Morkoc “Emerging Gallium Nitride Based Devices” In Proceedings of the IEEE 83.10, 1995, pp. 1306–1355 DOI: 10.1109/5.469300
  33. “III-Nitride Photonics” In IEEE Photonics Journal 2.2, 2010, pp. 241–248 DOI: 10.1109/JPHOT.2010.2045887
  34. “Measurement of Second Order Susceptibilities of GaN and AlGaN” In Journal of Applied Physics 97.5, 2005, pp. 053512 DOI: 10.1063/1.1852695
  35. “GaN-based Waveguide Devices for Long-Wavelength Optical Communications” In Applied Physics Letters 82.9, 2003, pp. 1326–1328 DOI: 10.1063/1.1557790
  36. “Integrated GaN Photonic Circuits on Silicon (100) for Second Harmonic Generation” In Optics Express 19.11 Optica Publishing Group, 2011, pp. 10462–10470 DOI: 10.1364/OE.19.010462
  37. B. Thubthimthong, T. Sasaki and K. Hane “Asymmetrically and Vertically Coupled Hybrid Si/GaN Microring Resonators for On-Chip Optical Interconnects” In IEEE Photonics Journal 7.4, 2015, pp. 1–11 DOI: 10.1109/JPHOT.2015.2464721
  38. “Broadband Nanophotonic Waveguides and Resonators Based on Epitaxial GaN Thin Films” In Applied Physics Letters 107.14, 2015, pp. 141113 DOI: 10.1063/1.4933093
  39. “Low Loss GaN Waveguides at the Visible Spectral Wavelengths for Integrated Photonics Applications” In Optics Express 25.25 Optica Publishing Group, 2017, pp. 31758–31773 DOI: 10.1364/OE.25.031758
  40. “Low-Loss GaN-on-insulator Platform for Integrated Photonics” In Optics Express 30.12 Optica Publishing Group, 2022, pp. 20737–20749 DOI: 10.1364/OE.461138
  41. “High-Confinement Gallium Nitride-on-Sapphire Waveguides for Integrated Nonlinear Photonics” In Optics Letters 44.5, 2019, pp. 1064 DOI: 10.1364/OL.44.001064
  42. “Integrated Gallium Nitride Nonlinear Photonics” In Laser & Photonics Reviews 16.1, 2022, pp. 2100071 DOI: 10.1002/lpor.202100071
  43. “Optical Parametric Oscillation in Silicon Carbide Nanophotonics” In Optica 7.9 Optica Publishing Group, 2020, pp. 1139–1142 DOI: 10.1364/OPTICA.394138
  44. Alexander L. Gaeta, Michal Lipson and Tobias J. Kippenberg “Photonic-Chip-Based Frequency Combs” In Nature Photonics 13.3 Nature Publishing Group, 2019, pp. 158–169 DOI: 10.1038/s41566-019-0358-x
  45. “Integrated Gallium Phosphide Nonlinear Photonics” In Nature Photonics 14.1 Nature Publishing Group UK London, 2020, pp. 57–62
  46. “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared” In Optics Letters 32.6 Optica Publishing Group, 2007, pp. 668–670
  47. “Quantification of Scattering Loss of III-nitride Photonic Crystal Cavities in the Blue Spectral Range” In Physical Review B 95.12 American Physical Society, 2017, pp. 125313 DOI: 10.1103/PhysRevB.95.125313
  48. “Free-Carrier and Phonon Properties of n- and p-Type Hexagonal GaN Films Measured by Infrared Ellipsometry” In Physical Review B 62.11 American Physical Society, 2000, pp. 7365–7377 DOI: 10.1103/PhysRevB.62.7365
  49. “Correlation between Mobility Collapse and Carbon Impurities in Si-doped GaN Grown by Low Pressure Metalorganic Chemical Vapor Deposition” In Journal of Applied Physics 120.10, 2016, pp. 105701 DOI: 10.1063/1.4962017
  50. “Photon Absorption in the Restrahlen Band of Thin Films of GaN and AlN: Two Phonon Effects” In Journal of Applied Physics 98.4, 2005, pp. 043517 DOI: 10.1063/1.2034648
  51. “Transparency of GaN Substrates in the Mid-Infrared Spectral Range” In Crystal Research and Technology 47.3, 2012, pp. 347–350 DOI: 10.1002/crat.201100443
  52. “HITRAN Application Programming Interface (HAPI): A Comprehensive Approach to Working with Spectroscopic Data” In Journal of Quantitative Spectroscopy and Radiative Transfer 177, XVIIIth Symposium on High Resolution Molecular Spectroscopy (HighRus-2015), Tomsk, Russia, 2016, pp. 15–30 DOI: 10.1016/j.jqsrt.2016.03.005
  53. “Simulating Supercontinua from Mixed and Cascaded Nonlinearities” In APL Photonics 8.3 AIP Publishing, 2023, pp. 036114
  54. “Broadband Measurements of the Refractive Indices of Bulk Gallium Nitride” In Optical Materials Express 4.7 Optica Publishing Group, 2014, pp. 1287–1296 DOI: 10.1364/OME.4.001287
  55. Albert Schliesser, Nathalie Picqué and Theodor W. Hänsch “Mid-Infrared Frequency Combs” In Nature Photonics 6.7 Nature Publishing Group, 2012, pp. 440–449 DOI: 10.1038/nphoton.2012.142
  56. “Chip-Based Self-Referencing Using Integrated Lithium Niobate Waveguides” In Optica 7.6 Optical Society of America, 2020, pp. 702–707 DOI: 10.1364/OPTICA.392363
  57. “Stable and Compact RF-to-optical Link Using Lithium Niobate on Insulator Waveguides” In APL Photonics 6.12, 2021, pp. 121303 DOI: 10.1063/5.0070103
  58. “Self-Organized Nonlinear Gratings for Ultrafast Nanophotonics” In Nature Photonics 13.7 Nature Publishing Group, 2019, pp. 494–499 DOI: 10.1038/s41566-019-0449-8
  59. “Self-Referenced Frequency Combs Using High-Efficiency Silicon-Nitride Waveguides” In Optics Letters 42.12 Optica Publishing Group, 2017, pp. 2314–2317 DOI: 10.1364/OL.42.002314
  60. Daiki Tanaka, Kenji Iso and Jun Suda “Comparative Study of Electrical Properties of Semi-Insulating GaN Substrates Grown by Hydride Vapor Phase Epitaxy and Doped with Fe, C, or Mn” In Journal of Applied Physics 133.5, 2023, pp. 055701 DOI: 10.1063/5.0131470
  61. “Development of Periodically Oriented Gallium Nitride for Non-Linear Optics [Invited]” In Optical Materials Express 2.9 Optica Publishing Group, 2012, pp. 1203–1208 DOI: 10.1364/OME.2.001203

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.