Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Electromagnetism-Inspired Method for Estimating In-Grasp Torque from Visuotactile Sensors (2404.15626v1)

Published 24 Apr 2024 in cs.RO

Abstract: Tactile sensing has become a popular sensing modality for robot manipulators, due to the promise of providing robots with the ability to measure the rich contact information that gets transmitted through its sense of touch. Among the diverse range of information accessible from tactile sensors, torques transmitted from the grasped object to the fingers through extrinsic environmental contact may be particularly important for tasks such as object insertion. However, tactile torque estimation has received relatively little attention when compared to other sensing modalities, such as force, texture, or slip identification. In this work, we introduce the notion of the Tactile Dipole Moment, which we use to estimate tilt torques from gel-based visuotactile sensors. This method does not rely on deep learning, sensor-specific mechanical, or optical modeling, and instead takes inspiration from electromechanics to analyze the vector field produced from 2D marker displacements. Despite the simplicity of our technique, we demonstrate its ability to provide accurate torque readings over two different tactile sensors and three object geometries, and highlight its practicality for the task of USB stick insertion with a compliant robot arm. These results suggest that simple analytical calculations based on dipole moments can sufficiently extract physical quantities from visuotactile sensors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. A. Yamaguchi and C. G. Atkeson, “Recent progress in tactile sensing and sensors for robotic manipulation: can we turn tactile sensing into vision?” Advanced Robotics, vol. 33, no. 14, pp. 661–673, 2019.
  2. “Gelsight mini,” https://www.gelsight.com/gelsightmini/, accessed: 2023-09-03.
  3. M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos, A. Byagowi, G. Kammerer et al., “Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 3838–3845, 2020.
  4. W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot tactile sensors for estimating geometry and force,” Sensors, vol. 17, no. 12, p. 2762, 2017.
  5. G. Zhang, Y. Du, H. Yu, and M. Y. Wang, “Deltact: A vision-based tactile sensor using a dense color pattern,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 778–10 785, 2022.
  6. Z. Si, Z. Zhu, A. Agarwal, S. Anderson, and W. Yuan, “Grasp stability prediction with sim-to-real transfer from tactile sensing,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022, pp. 7809–7816.
  7. S. Tian, F. Ebert, D. Jayaraman, M. Mudigonda, C. Finn, R. Calandra, and S. Levine, “Manipulation by feel: Touch-based control with deep predictive models,” in IEEE International Conference on Robotics and Automation, 2019, pp. 818–824.
  8. G. Cao, Y. Zhou, D. Bollegala, and S. Luo, “Spatio-temporal attention model for tactile texture recognition,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020, pp. 9896–9902.
  9. M. Li, T. Li, and Y. Jiang, “Marker displacement method used in vision-based tactile sensors—from 2D to 3D-A review,” IEEE Sensors Journal, 2023.
  10. Y. Zhang, Z. Kan, Y. Yang, Y. A. Tse, and M. Y. Wang, “Effective estimation of contact force and torque for vision-based tactile sensors with helmholtz–hodge decomposition,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4094–4101, 2019.
  11. I. H. Taylor, S. Dong, and A. Rodriguez, “Gelslim 3.0: High-resolution measurement of shape, force and slip in a compact tactile-sensing finger,” in IEEE International Conference on Robotics and Automation, 2022, pp. 10 781–10 787.
  12. A. Yamaguchi and C. G. Atkeson, “Tactile behaviors with the vision-based tactile sensor fingervision,” International Journal of Humanoid Robotics, vol. 16, no. 03, p. 1940002, 2019.
  13. C. Sferrazza and R. D’Andrea, “Design, motivation and evaluation of a full-resolution optical tactile sensor,” Sensors, vol. 19, no. 4, p. 928, 2019.
  14. S. Cui, R. Wang, J. Hu, J. Wei, S. Wang, and Z. Lou, “In-hand object localization using a novel high-resolution visuotactile sensor,” IEEE Transactions on Industrial Electronics, vol. 69, no. 6, pp. 6015–6025, 2021.
  15. L. Zhang, Y. Wang, and Y. Jiang, “Tac3d: A novel vision-based tactile sensor for measuring forces distribution and estimating friction coefficient distribution,” arXiv preprint arXiv:2202.06211, 2022.
  16. B. Ward-Cherrier, N. Pestell, L. Cramphorn, B. Winstone, M. E. Giannaccini, J. Rossiter, and N. F. Lepora, “The tactip family: Soft optical tactile sensors with 3d-printed biomimetic morphologies,” Soft Robotics, vol. 5, no. 2, pp. 216–227, 2018.
  17. K. Kamiyama, K. Vlack, T. Mizota, H. Kajimoto, K. Kawakami, and S. Tachi, “Vision-based sensor for real-time measuring of surface traction fields,” IEEE Computer Graphics and Applications, vol. 25, no. 1, pp. 68–75, 2005.
  18. W. Li, A. Alomainy, I. Vitanov, Y. Noh, P. Qi, and K. Althoefer, “F-touch sensor: Concurrent geometry perception and multi-axis force measurement,” IEEE Sensors Journal, vol. 21, no. 4, pp. 4300–4309, 2020.
  19. A. J. Fernandez, H. Weng, P. B. Umbanhowar, and K. M. Lynch, “Visiflex: A low-cost compliant tactile fingertip for force, torque, and contact sensing,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3009–3016, 2021.
  20. H. Bhatia, V. Pascucci, and P.-T. Bremer, “The natural helmholtz-hodge decomposition for open-boundary flow analysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 11, pp. 1566–1578, 2014.
  21. W. K. Do, B. Jurewicz, and M. Kennedy, “Densetact 2.0: Optical tactile sensor for shape and force reconstruction,” in IEEE International Conference on Robotics and Automation, 2023, pp. 12 549–12 555.
  22. D. Ma, S. Dong, and A. Rodriguez, “Extrinsic contact sensing with relative-motion tracking from distributed tactile measurements,” in IEEE International Conference on Robotics and Automation, 2021, pp. 11 262–11 268.
  23. D. Ma, E. Donlon, S. Dong, and A. Rodriguez, “Dense tactile force estimation using GelSlim and inverse FEM,” in IEEE International Conference on Robotics and Automation, 2019, pp. 5418–5424.
  24. S. Kim and A. Rodriguez, “Active extrinsic contact sensing: Application to general peg-in-hole insertion,” in IEEE International Conference on Robotics and Automation, 2022, pp. 10 241–10 247.
  25. S. Dong, D. K. Jha, D. Romeres, S. Kim, D. Nikovski, and A. Rodriguez, “Tactile-rl for insertion: Generalization to objects of unknown geometry,” in IEEE International Conference on Robotics and Automation, 2021, pp. 6437–6443.
  26. Y. Shirai, D. K. Jha, A. U. Raghunathan, and D. Hong, “Tactile tool manipulation,” arXiv preprint arXiv:2301.06698, 2023.
  27. L. Fu, H. Huang, L. Berscheid, H. Li, K. Goldberg, and S. Chitta, “Safe self-supervised learning in real of visuo-tactile feedback policies for industrial insertion,” in IEEE International Conference on Robotics and Automation, 2023, pp. 10 380–10 386.
  28. Y. Zhao, X. Jing, K. Qian, D. F. Gomes, and S. Luo, “Skill generalization of tubular object manipulation with tactile sensing and sim2real learning,” Robotics and Autonomous Systems, vol. 160, p. 104321, 2023.
  29. C. Wang, S. Wang, B. Romero, F. Veiga, and E. Adelson, “Swingbot: Learning physical features from in-hand tactile exploration for dynamic swing-up manipulation,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020, pp. 5633–5640.
  30. F. von Drigalski, K. Tanaka, M. Hamaya, R. Lee, C. Nakashima, Y. Shibata, and Y. Ijiri, “A compact, cable-driven, activatable soft wrist with six degrees of freedom for assembly tasks,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020, pp. 8752–8757.
  31. C. Sferrazza, A. Wahlsten, C. Trueeb, and R. D’Andrea, “Ground truth force distribution for learning-based tactile sensing: A finite element approach,” IEEE Access, vol. 7, pp. 173 438–173 449, 2019.
  32. S. Dong, D. Ma, E. Donlon, and A. Rodriguez, “Maintaining grasps within slipping bounds by monitoring incipient slip,” in IEEE International Conference on Robotics and Automation, 2019, pp. 3818–3824.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com