Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bi-directional Quantum Search Algorithm (2404.15616v1)

Published 24 Apr 2024 in quant-ph and cs.AI

Abstract: Grover's search algorithms, including various partial Grover searches, experience scaling problems as the number of iterations rises with increased qubits, making implementation more computationally expensive. This paper combines Partial Grover's search algorithm and Bi-directional Search to create a fast Grover's quantum search algorithm, referred to as Bi-Directional Grover Search (BDGS). We incorporated a bi-directional search tactic with a partial Grover search, starting from an initial state and a single marked state in parallel. We have shown in this article that our novel approach requires $\frac{\pi}{4\sqrt{2}}\sqrt{N}(1-\sqrt{\frac{1}{b{r/2k}}})$ iterations over regular Grover Search and Partial Grover Search (PGS), which takes $\frac{\pi}{4}\sqrt{N}\sqrt{1-\frac{1}{b}}$ (here, $N=2r$ elements, $b$ is the branching factor of partial search, and $k= \lceil\log_2b \rceil$). The proposed BDGS algorithm is benchmarked against the state-of-the-art Depth-First Grover's Search (DFGS) and generic Grover's Search (GS) implementations for $2$ to $20$ qubits and provides promising results. The Qiskit Python implementation of the proposed BDGS algorithm is available on Github (https://github.com/hafeezzwiz21/DFGS-BDGS).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Physical review letters, vol. 79, no. 2, p. 325, 1997.
  2. C. Durr and P. Hoyer, “A quantum algorithm for finding the minimum,” arXiv, 1999.
  3. G. Brassard, P. HØyer, and A. Tapp, “Quantum cryptanalysis of hash and claw-free functions,” In proc. LATIN 1998: Theoretical Informatics, Springer, Berlin, Heidelberg, vol. 1380, pp. 163–169, 1998.
  4. ——, “Quantum counting,” In proc. Automata, Languages and Programming: ICALP 1998, Springer, Berlin, Heidelberg, vol. 1443, pp. 159–164, 1998.
  5. N. J. Cerf, L. K. Grover, and C. P. Williams, “Nested quantum search and structured problems,” Phys. Rev. A, vol. 61, p. 032303, 2000.
  6. N. Mahmud, B. Haase-Divine, A. MacGillivray, and E. El-Araby, “Quantum dimension reduction for pattern recognition in high-resolution spatio-spectral data,” IEEE Transactions on Computers, vol. 71, no. 1, pp. 1–12, 2022.
  7. C. Zalka, “Grover’s quantum searching algorithm is optimal,” Phys. Rev. A, vol. 60, no. 4, pp. 2746–2751, 1999.
  8. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and weaknesses of quantum computing,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1510–1523, 1997.
  9. M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds on quantum searching,” Fortschr. Phys., vol. 46, no. 4/5, pp. 493–505, 1998.
  10. V. Korepin and L. Grover, “Simple algorithm for partial quantum search,” Quantum Inf Process, vol. 5, p. 5–10, 2006.
  11. M. Heiligman, “Finding matches between two databases on a quantum computer,” 2000.
  12. P. Niroula and Y. Nam, “A quantum algorithm for string matching,” npj Quantum Inf, vol. 7, no. 37, 2021.
  13. P. Mateus and Y. Omar, “Quantum pattern matching,” 2005.
  14. A. Tulsi, “Optimal quantum searching to find a common element of two sets,” 2012.
  15. L. K. Grover and J. Radhakrishnan, “Is partial quantum search of a database any easier?” in Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, 2005, p. 186–194.
  16. H. Guo, “Depth-first grover search algorithm on hybrid quantum-classical computer,” 2022.
  17. L. K. Grover, “A fast quantum mechanical algorithm for database search,” In Proc. 28th Annu. ACM Symp. Theory Comput., pp. 212–219, 1996.
  18. C. P. Williams, “Explorations in quantum computing,” Texts in Computer Science, Springer, 2011.
  19. V. Korepin and J. Liao, “Quest for fast partial search algorithm,” Quantum Inf Process, vol. 5, p. 209–226, 2006.
  20. R. E. Korf, “Search techniques,” in Encyclopedia of Information Systems, 2003, pp. 31–43.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets