Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural units with time-dependent functionality (2404.15545v3)

Published 23 Apr 2024 in cond-mat.stat-mech and cs.NE

Abstract: We show that the time-resolved dynamics of an underdamped harmonic oscillator can be used to do multifunctional computation, performing distinct computations at distinct times within a single dynamical trajectory. We consider the amplitude of an oscillator whose inputs influence its frequency. The activity of the oscillator at fixed time is a nonmonotonic function of its inputs, and so it can solve problems such as XOR that are not linearly separable. The activity of the oscillator at fixed input is a nonmonotonic function of time, and so it is multifunctional in a temporal sense, able to carry out distinct nonlinear computations at distinct times within the same dynamical trajectory. We show that a single oscillator, observed at different times, can act as all of the elementary logic gates and can perform binary addition, the latter usually implemented in hardware using 5 logic gates. We show that a set of $n$ oscillators, observed at different times, can perform an arbitrary number of analog-to-$n$-bit digital conversions. We also show that oscillators can be trained by gradient descent to perform distinct classification tasks at distinct times. Computing with time-dependent functionality can be done in or out of equilibrium, and suggests a way of reducing the number of parameters or devices required to do nonlinear computations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. C. H. Bennett, International Journal of Theoretical Physics 21, 905 (1982).
  2. R. Landauer, Physics Today 44, 23 (1991).
  3. D. H. Wolpert, Journal of Physics A: Mathematical and Theoretical 52, 193001 (2019).
  4. P. E. Ceruzzi, A history of modern computing (MIT press, 2003).
  5. M. Horowitz and E. Grumbling,   (2019).
  6. B. Ulmann, Analog computing (Oldenbourg Wissenschaftsverlag Verlag, 2013).
  7. G. Csaba and W. Porod, Applied physics reviews 7 (2020).
  8. T. Hylton, in Proceedings, Vol. 47 (MDPI, 2020) p. 23.
  9. J. Von Neumann, “Non-linear capacitance or inductance switching, amplifying, and memory organs,”  (1957), US Patent 2,815,488.
  10. S. Ciliberto, Physical Review X 7, 021051 (2017).
  11. E. Goto, Proceedings of the IRE 47, 1304 (1959).
  12. R. Landauer, IBM journal of research and development 5, 183 (1961).
  13. T. Sagawa, Progress of theoretical physics 127, 1 (2012).
  14. P. R. Zulkowski and M. R. DeWeese, Physical Review E 89, 052140 (2014).
  15. S. Dago and L. Bellon, Physical Review Letters 128, 070604 (2022).
  16. Single operations and multiple operations incur the same energy cost, with the caveat that the input I𝐼Iitalic_I to the neuron must be maintained long enough to observe these operations.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets