Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Correlations versus noise in the NFT market (2404.15495v2)

Published 23 Apr 2024 in q-fin.ST, cs.CE, econ.EM, physics.data-an, and stat.AP

Abstract: The non-fungible token (NFT) market emerges as a recent trading innovation leveraging blockchain technology, mirroring the dynamics of the cryptocurrency market. The current study is based on the capitalization changes and transaction volumes across a large number of token collections on the Ethereum platform. In order to deepen the understanding of the market dynamics, the collection-collection dependencies are examined by using the multivariate formalism of detrended correlation coefficient and correlation matrix. It appears that correlation strength is lower here than that observed in previously studied markets. Consequently, the eigenvalue spectra of the correlation matrix more closely follow the Marchenko-Pastur distribution, still, some departures indicating the existence of correlations remain. The comparison of results obtained from the correlation matrix built from the Pearson coefficients and, independently, from the detrended cross-correlation coefficients suggests that the global correlations in the NFT market arise from higher frequency fluctuations. Corresponding minimal spanning trees (MSTs) for capitalization variability exhibit a scale-free character while, for the number of transactions, they are somewhat more decentralized.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (100)
  1. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”  , 1–9 (2009).
  2. F. A. Sunny, P. Hajek, M. Munk, M. Z. Abedin, M. S. Satu, M. I. A. Efat,  and M. J. Islam, “A systematic review of blockchain applications,” IEEE Access 10, 59155–59177 (2022).
  3. ETH, https://ethereum.org/whitepaper.
  4. ERC-20 protocol, https://eips.ethereum.org/EIPS/eip-20.
  5. M. Rosenfeld, “Overview of colored coins,”  (2012).
  6. quantmNFT, “quantmnft,” https://nftnow.com/art/quantum-the-first-piece-of-nft-art-ever-created.
  7. C. Bellón and I. Figuerola-Ferretti, “Bubbles in ethereum,” Finance Research Letters 46, 102387 (2022).
  8. X.-J. Jiang and X. F. Liu, “Cryptokitties transaction network analysis: The rise and fall of the first blockchain game mania,” Frontiers in Physics 9 (2021).
  9. ERC-721 protocol, https://eips.ethereum.org/EIPS/eip-721.
  10. Y. Maouchi, L. Charfeddine,  and G. El Montasser, “Understanding digital bubbles amidst the COVID-19 pandemic: Evidence from DeFi and NFTs,” Finance Research Letters 47, 102584 (2022).
  11. TVL, https://coinmarketcap.com/chain-ranking/.
  12. S. W. Mingjun Guo and Y. Wei, “Bubbles in NFT markets: correlated with cryptocurrencies or sentiment indexes?” Applied Economics Letters 0, 1–7 (2023).
  13. Christies Press Center, https://www.christies.com/about-us/press-archive/details?PressReleaseID=9970.
  14. F. Horky, L. Dubbick, F. Rhein,  and J. Fidrmuc, “Don’t miss out on NFTs?! A sentiment-based analysis of the early NFT market,” International Review of Economics & Finance 88, 799–814 (2023).
  15. H. M. Kim and S. Chakraborty, “Exploring the diffusion of digital fashion and influencers’ social roles in the Metaverse: an analysis of Twitter hashtag networks,” Internet Research 34, 107–128 (2024).
  16. NFTceleb, https://www.techopedia.com/celebrity-nfts-10-famous-personalities-who-launched- their-own-digital-tokens.
  17. TrumpNFT, https://www.businessinsider.com/trump-major-announcement-digital-trading-card-nfts-2022-12.
  18. NFTbubble, https://www.forbes.com/sites/digital-assets/2023/11/10/nfts-are-retaining-value-researchers-say.
  19. NFTcrash,, https://supra.com/academy/nft-market-crash/.
  20. coinmarketcap, https://coinmarketcap.com/nft/.
  21. P. Bose, D. Das, F. Gritti, N. Ruaro, C. Kruegel,  and G. Vigna, “Exploiting unfair advantages: Investigating opportunistic trading in the NFT market,”  (2023).
  22. I. Sifat, S. A. Tariq,  and D. van Donselaar, “Suspicious trading in nonfungible tokens (NFTs),” Information & Management 61, 103898 (2024).
  23. V. von Wachter, J. R. Jensen, F. Regner,  and O. Ross, “NFT Wash Trading: Quantifying suspicious behaviour in NFT markets,”  (2022), http://arxiv.org/abs/2202.03866.
  24. P. Bose, D. Das, F. Gritti, N. Ruaro, C. Kruegel,  and G. Vigna, “Exploiting unfair advantages: Investigating opportunistic trading in the NFT market,”  (2024), https://arxiv.org/abs/2310.06844.
  25. BTCordinals, https://docs.ordinals.com/.
  26. Blokchianshare, https://www.coingecko.com/research/publications/market-share-nft-blockchains.
  27. NFTmarketplaces, https://dappradar.com/rankings/nft/marketplaces.
  28. NFTcrit, https://markets.businessinsider.com/news/currencies/ethereum-vitalik-buterin-crypto-bored-ape- yacht-club-nft-wealth-2022-3.
  29. O. Ali, M. Momin, A. Shrestha, R. Das, F. Alhajj,  and Y. K. Dwivedi, “A review of the key challenges of non-fungible tokens,” Technological Forecasting and Social Change 187, 122248 (2023).
  30. D. Chalmers, C. Fisch, R. Matthews, W. Quinn,  and J. Recker, “Beyond the bubble: Will NFTs and digital proof of ownership empower creative industry entrepreneurs?” Journal of Business Venturing Insights 17, e00309 (2022).
  31. C. Giannoni, F. Medda,  and S. Bartolucci, “Blockchain technologies and art: Opportunities and open challenges,”  (2023), https://ssrn.com/abstract=4439318.
  32. P. Szydło, M. Wątorek, J. Kwapień,  and S. Drożdż, “Characteristics of price related fluctuations in non-fungible token (NFT) market,” Chaos 34, 013108 (2024).
  33. N. James and M. Menzies, “Efficiency of communities and financial markets during the 2020 pandemic,” Chaos 31, 083116 (2021).
  34. N. James, M. Menzies,  and G. A. Gottwald, “On financial market correlation structures and diversification benefits across and within equity sectors,” Physica A 604, 127682 (2022).
  35. S. Drożdż, A. Górski,  and J. Kwapień, “World currency exchange rate cross-correlations,” The European Physical Journal B 58, 499–502 (2007).
  36. R. Gębarowski, P. Oświęcimka, M. Wątorek,  and S. Drożdż, “Detecting correlations and triangular arbitrage opportunities in the Forex by means of multifractal detrended cross-correlations analysis,” Nonlinear Dynamics 98, 2349–2364 (2019).
  37. J. Miśkiewicz, “Network analysis of cross-correlations on Forex market during crises. globalisation on Forex market,” Entropy 23 (2021).
  38. D. Stosic, D. Stosic, T. B. Ludermir,  and T. Stosic, “Collective behavior of cryptocurrency price changes,” Physica A 507, 499–509 (2018).
  39. H. Chaudhari and M. Crane, “Cross-correlation dynamics and community structures of cryptocurrencies,” Journal of Computational Science 44, 101130 (2020).
  40. S. Drożdż, L. Minati, P. Oświęcimka, M. Stanuszek,  and M. Wątorek, “Competition of noise and collectivity in global cryptocurrency trading: Route to a self-contained market,” Chaos 30, 023122 (2020).
  41. M. Wątorek, S. Drożdż, J. Kwapień, L. Minati, P. Oświęcimka,  and M. Stanuszek, “Multiscale characteristics of the emerging global cryptocurrency market,” Physics Reports 901, 1–82 (2021).
  42. N. James and M. Menzies, “Collective correlations, dynamics, and behavioural inconsistencies of the cryptocurrency market over time,” Nonlinear Dynamics 107, 4001–4017 (2022).
  43. A. P. N. Nguyen, T. T. Mai, M. Bezbradica,  and M. Crane, “The cryptocurrency market in transition before and after COVID-19: An opportunity for investors?” Entropy 24 (2022).
  44. J. Gavin and M. Crane, “Community detection in cryptocurrencies with potential applications to portfolio diversification,” in FinTech Research and Applications: Challenges and Opportunities (World Scientific, 2023) pp. 177–202.
  45. N. James and M. Menzies, “Collective dynamics, diversification and optimal portfolio construction for cryptocurrencies,” Entropy 25 (2023).
  46. L. Laloux, P. Cizeau, J.-P. Bouchaud,  and M. Potters, “Noise dressing of financial correlation matrices,” Physical Review Letters 83, 1467–1470 (1999).
  47. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral,  and H. E. Stanley, “Universal and nonuniversal properties of cross correlations in financial time series,” Physical Review Letters 83, 1471–1474 (1999).
  48. S. Drożdż, J. Kwapień, F. Grümmer, F. Ruf,  and J. Speth, “Quantifying the dynamics of financial correlations,” Physica A 299, 144–153 (2001).
  49. R. Mantegna, “Information and hierarchical structure in financial markets,” Computer Physics Communications 121-122, 153–156 (1999).
  50. M. Tumminello, F. Lillo,  and R. N. Mantegna, “Correlation, hierarchies, and networks in financial markets,” Journal of economic behavior & organization 75, 40–58 (2010).
  51. S. Miccichè, G. Bonanno, F. Lillo,  and R. N. Mantegna, “Degree stability of a minimum spanning tree of price return and volatility,” Physica A 324, 66–73 (2003), proceedings of the International Econophysics Conference.
  52. M. Wiliński, A. Sienkiewicz, T. Gubiec, R. Kutner,  and Z. Struzik, “Structural and topological phase transitions on the German Stock Exchange,” Physica A 392, 5963–5973 (2013).
  53. J. Miśkiewicz and D. Bonarska-Kujawa, “Evolving network analysis of S&P500 components: COVID-19 influence of cross-correlation network structure,” Entropy 24 (2022), 10.3390/e24010021.
  54. A. Z. Górski, S. Drożdż,  and J. Kwapień, “Scale free effects in world currency exchange network,” The European Physical Journal B 66, 91–96 (2008).
  55. K. Polovnikov, V. Kazakov,  and S. Syntulsky, “Core–periphery organization of the cryptocurrency market inferred by the modularity operator,” Physica A 540, 123075 (2020).
  56. S. Drożdż, J. Kwapień,  and M. Wątorek, “What is mature and what is still emerging in the cryptocurrency market?” Entropy 25 (2023).
  57. E. Brigatti, V. Rocha Grecco, A. Hernández,  and M. Bertella, “Inferring interactions in multispecies communities: The cryptocurrency market case,” Plos one 18, e0291130 (2023).
  58. A. P. N. Nguyen, T. T. Mai, M. Bezbradica,  and M. Crane, “Volatility and returns connectedness in cryptocurrency markets: Insights from graph-based methods,” Physica A 632, 129349 (2023).
  59. CryptoSlam, “Cryptomslam,” https://www.cryptoslam.io.
  60. miladyMusk, “miladymusk,” https://cointelegraph.com/news/milady-nft-floor-price-surges-after-elon-musk-tweet.
  61. T. G. Andersen and T. Bollerslev, “Answering the skeptics: Yes, standard volatility models do provide accurate forecasts,” International Economic Review 39, 885–905 (1998).
  62. G. Andersen, T. Bollerslev,  and S. Lange, “Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon,” Journal of Empirical Finance 6, 457–477 (1999).
  63. T. Bollerslev, J. Cai,  and F. M. Song, “Intraday periodicity, long memory volatility, and macroeconomic announcement effects in the US Treasury bond market,” Journal of Empirical Finance 7, 37–55 (2000).
  64. M. Wątorek, M. Skupień, J. Kwapień,  and S. Drożdż, “Decomposing cryptocurrency high-frequency price dynamics into recurring and noisy components,” Chaos 33, 083146 (2023).
  65. M. Ausloos, “Statistical physics in foreign exchange currency and stock markets,” Physica A 285, 48–65 (2000).
  66. R. Cont, “Empirical properties of asset returns: stylized facts and statistical issues,” Quantitative Finance 1, 223–236 (2001).
  67. V. Plerou, H. E. Stanley, X. Gabaix,  and P. Gopikrishnan, “On the origin of power-law fluctuations in stock prices,” Quantitative Finance 4, 11–15 (2004).
  68. M. Wątorek, J. Kwapień,  and S. Drożdż, “Financial return distributions: Past, present, and COVID-19,” Entropy 23 (2021).
  69. P. Gopikrishnan, V. Plerou, L. A. Nunes Amaral, M. Meyer,  and H. E. Stanley, “Scaling of the distribution of fluctuations of financial market indices,” Physical Review E 60, 5305–5316 (1999).
  70. J. Kwapień, P. Oświęcimka,  and S. Drożdż, “Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations,” Physical Review E 92, 052815 (2015).
  71. C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley,  and A. L. Goldberger, “Mosaic organization of dna nucleotides,” Physical Review E 49, 1685–1689 (1994).
  72. J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde,  and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
  73. Z. Q. Jiang, W. J. Xie, W. X. Zhou,  and D. Sornette, “Multifractal analysis of financial markets: A review,” Reports on Progress in Physics 82, 125901 (2019).
  74. P. Oświęcimka, S. Drożdż, J. Kwapień,  and A. Z. Górski, “Effect of detrending on multifractal characteristics,” Acta Physica Polonica A 123, 597–603 (2013).
  75. G. F. Zebende, “DCCA cross-correlation coefficient: Quantifying level of cross-correlation,” Physica A 390, 614–618 (2011).
  76. A.-L. Barabasi and T. Vicsek, “Multifractality of self-affine fractals,” Physical Review A 44, 2730–2733 (1991).
  77. S. Drożdż, J. Kwapień, P. Oświęcimka,  and R. Rak, “Quantitative features of multifractal subtleties in time series,” EPL 88, 60003 (2009).
  78. W.-X. Zhou, “The components of empirical multifractality in financial returns,” Europhysics letters 88, 28004 (2009).
  79. R. Rak and D. Grech, “Quantitative approach to multifractality induced by correlations and broad distribution of data,” Physica A 508, 48–66 (2018).
  80. J. Kwapień, P. Blasiak, S. Drożdż,  and P. Oświęcimka, “Genuine multifractality in time series is due to temporal correlations,” Physical Review E 107, 034139 (2023).
  81. R. Kutner, M. Ausloos, D. Grech, T. Di Matteo, C. Schinckus,  and H. Eugene Stanley, “Econophysics and sociophysics: Their milestones & challenges,” Physica A 516, 240–253 (2019).
  82. S. Drożdż and P. Oświȩcimka, “Detecting and interpreting distortions in hierarchical organization of complex time series,” Physical Review E 91, 030902 (2015).
  83. S. Drożdż, R. Gębarowski, L. Minati, P. Oświęcimka,  and M. Wątorek, “Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects,” Chaos 28, 071101 (2018).
  84. J. Kwapień, M. Wątorek, M. Bezbradica, M. Crane, T. Tan Mai,  and S. Drożdż, “Analysis of inter-transaction time fluctuations in the cryptocurrency market,” Chaos 32, 083142 (2022).
  85. M. Wątorek, J. Kwapień,  and S. Drożdż, “Multifractal cross-correlations of bitcoin and ether trading characteristics in the post-COVID-19 time,” Future Internet 14 (2022).
  86. X. Brouty and M. Garcin, “Fractal properties, information theory, and market efficiency,” Chaos, Solitons & Fractals 180, 114543 (2024).
  87. K. Pearson, “Note on regression and inheritance in the case of two parents,” Proceedings of the Royal Society of London 58, 240–242 (1895).
  88. M. L. Mehta, Random Matrices (Elsevier, 2004).
  89. J. Wishart, “The generalised product moment distribution in samples from a normal multivariate population,” Biometrika 20A, 32–52 (1928).
  90. V. A. Marčenko and L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices,” Mathematics of the USSR-Sbornik 1, 457–483 (1967).
  91. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, T. Guhr,  and H. E. Stanley, “Random matrix approach to cross correlations in financial data,” Physical Review E 65, 066126 (2002).
  92. J. Kwapień and S. Drożdż, “Physical approach to complex systems,” Physics Reports 515, 115–226 (2012).
  93. M. McDonald, O. Suleman, S. Williams, S. Howison,  and N. F. Johnson, “Detecting a currency’s dominance or dependence using foreign exchange network trees,” Physical Review E 72 (2005).
  94. J. Kwapień, S. Drożdż,  and P. Oświęcimka, “The bulk of the stock market correlation matrix is not pure noise,” Physica A 359, 589–606 (2006).
  95. M. Wątorek, S. Drożdż, P. Oświęcimka,  and M. Stanuszek, “Multifractal cross-correlations between the world oil and other financial markets in 2012–2017,” Energy Economics 81, 874–885 (2019).
  96. J. Kwapień, M. Wątorek,  and S. Drożdż, “Cryptocurrency market consolidation in 2020-2021,” Entropy 23 (2021).
  97. J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman problem,” Proceedings of the American Mathematical Society 7, 48–50 (1956).
  98. R. C. Prim, “Shortest connection networks and some generalizations,” Bell System Technical Journal 36, 1389–1401 (1957).
  99. V. D. Blondel, J.-L. Guillaume, R. Lambiotte,  and E. Lefebvre, “Fast unfolding of communities in large networks,” Journal of Statistical Mechanics: Theory and Experiment 2008, P10008 (2008).
  100. E. Ravasz and A.-L. Barabási, “Hierarchical organization in complex networks,” Physical Review E 67, 026112 (2003).
Citations (2)

Summary

We haven't generated a summary for this paper yet.