A possible origin of the $α$-vacuum as the initial state of the Universe (2404.15450v1)
Abstract: We investigate the cosmological observables using the Euclidean path integral approach. Specifically, we study both the no-boundary compact instantons scenario and the Euclidean wormholes scenario that can induce the creation of two universes from nothing. It is known that perturbations associated with the no-boundary scenario can only be consistent with the Bunch-Davies vacuum. Here we demonstrate that the Euclidean wormholes can allow for a de Sitter invariant vacuum, the so-called $\alpha$-vacuum state, where the Bunch-Davies vacuum is a special case. This therefore provides the $\alpha$-vacuum a geometrical origin. As an aside, we discuss a subtle phase issue when considering the power spectrum related to $\alpha$-vacuum in the closed universe framework.
- V. Mukhanov and S. Winitzki, “Introduction to quantum effects in gravity,” Cambridge University Press, 2007, L. E. Parker and D. Toms, “Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity,” Cambridge University Press, 2009,
- R. H. Brandenberger, “Inflationary cosmology: Progress and problems,” [arXiv:hep-ph/9910410 [hep-ph]]; J. Martin and R. H. Brandenberger, Phys. Rev. D 63, 123501 (2001). arXiv:hep-th/0005209 [hep-th]; J. C. Niemeyer, Phys. Rev. D 63, 123502 (2001) [arXiv:astro-ph/0005533 [astro-ph]]; R. H. Brandenberger and J. Martin, Mod. Phys. Lett. A 16, 999-1006 (2001) [arXiv:astro-ph/0005432 [astro-ph]]; C. S. Chu, B. R. Greene and G. Shiu, Mod. Phys. Lett. A 16, 2231-2240 (2001) [arXiv:hep-th/0011241 [hep-th]]; A. Kempf and J. C. Niemeyer, Phys. Rev. D 64, 103501 (2001) [arXiv:astro-ph/0103225 [astro-ph]]; A. A. Starobinsky, Pisma Zh. Eksp. Teor. Fiz. 73, 415-418 (2001) [arXiv:astro-ph/0104043 [astro-ph]]; R. Easther, B. R. Greene, W. H. Kinney and G. Shiu, Phys. Rev. D 64, 103502 (2001) [arXiv:hep-th/0104102 [hep-th]]; R. Easther, B. R. Greene, W. H. Kinney and G. Shiu, Phys. Rev. D 67, 063508 (2003) [arXiv:hep-th/0110226 [hep-th]]; N. Kaloper, M. Kleban, A. E. Lawrence and S. Shenker, Phys. Rev. D 66, 123510 (2002) [arXiv:hep-th/0201158 [hep-th]]; R. Brandenberger and P. M. Ho, Phys. Rev. D 66, 023517 (2002) [arXiv:hep-th/0203119 [hep-th]].
- P. Peter and J. P. Uzan, “Primordial Cosmology,” Oxford University Press, (2013).
- J. J. Halliwell, [arXiv:0909.2566 [gr-qc]].
- D. Baumann, [arXiv:0907.5424 [hep-th]].