Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A possible origin of the $α$-vacuum as the initial state of the Universe (2404.15450v1)

Published 23 Apr 2024 in gr-qc

Abstract: We investigate the cosmological observables using the Euclidean path integral approach. Specifically, we study both the no-boundary compact instantons scenario and the Euclidean wormholes scenario that can induce the creation of two universes from nothing. It is known that perturbations associated with the no-boundary scenario can only be consistent with the Bunch-Davies vacuum. Here we demonstrate that the Euclidean wormholes can allow for a de Sitter invariant vacuum, the so-called $\alpha$-vacuum state, where the Bunch-Davies vacuum is a special case. This therefore provides the $\alpha$-vacuum a geometrical origin. As an aside, we discuss a subtle phase issue when considering the power spectrum related to $\alpha$-vacuum in the closed universe framework.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (5)
  1. V. Mukhanov and S. Winitzki, “Introduction to quantum effects in gravity,” Cambridge University Press, 2007, L. E. Parker and D. Toms, “Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity,” Cambridge University Press, 2009,
  2. R. H. Brandenberger, “Inflationary cosmology: Progress and problems,” [arXiv:hep-ph/9910410 [hep-ph]]; J. Martin and R. H. Brandenberger, Phys. Rev. D 63, 123501 (2001). arXiv:hep-th/0005209 [hep-th]; J. C. Niemeyer, Phys. Rev. D 63, 123502 (2001) [arXiv:astro-ph/0005533 [astro-ph]]; R. H. Brandenberger and J. Martin, Mod. Phys. Lett. A 16, 999-1006 (2001) [arXiv:astro-ph/0005432 [astro-ph]]; C. S. Chu, B. R. Greene and G. Shiu, Mod. Phys. Lett. A 16, 2231-2240 (2001) [arXiv:hep-th/0011241 [hep-th]]; A. Kempf and J. C. Niemeyer, Phys. Rev. D 64, 103501 (2001) [arXiv:astro-ph/0103225 [astro-ph]]; A. A. Starobinsky, Pisma Zh. Eksp. Teor. Fiz. 73, 415-418 (2001) [arXiv:astro-ph/0104043 [astro-ph]]; R. Easther, B. R. Greene, W. H. Kinney and G. Shiu, Phys. Rev. D 64, 103502 (2001) [arXiv:hep-th/0104102 [hep-th]]; R. Easther, B. R. Greene, W. H. Kinney and G. Shiu, Phys. Rev. D 67, 063508 (2003) [arXiv:hep-th/0110226 [hep-th]]; N. Kaloper, M. Kleban, A. E. Lawrence and S. Shenker, Phys. Rev. D 66, 123510 (2002) [arXiv:hep-th/0201158 [hep-th]]; R. Brandenberger and P. M. Ho, Phys. Rev. D 66, 023517 (2002) [arXiv:hep-th/0203119 [hep-th]].
  3. P. Peter and J. P. Uzan, “Primordial Cosmology,” Oxford University Press, (2013).
  4. J. J. Halliwell, [arXiv:0909.2566 [gr-qc]].
  5. D. Baumann, [arXiv:0907.5424 [hep-th]].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com