Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

The Type-I Seesaw family (2404.15415v2)

Published 23 Apr 2024 in hep-ph

Abstract: We provide a comprehensive analysis of the Type-I Seesaw family of neutrino mass models, including the conventional type-I seesaw and its low-scale variants, namely the linear and inverse seesaws. We establish that all these models essentially correspond to a particular form of the type-I seesaw in the context of explicit lepton number violation. We then focus into the more interesting scenario of spontaneous lepton number violation, systematically categorizing all inequivalent minimal models. Furthermore, we identify and flesh out specific models that feature a rich majoron phenomenology and discuss some scenarios which, despite having heavy mediators and being invisible in processes such as $\mu \to e \gamma$, predict sizable rates for decays including the majoron in the final state.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (73)
  1. T. Kajita, “Nobel Lecture: Discovery of atmospheric neutrino oscillations,” Rev.Mod.Phys. 88 (2016) 030501.
  2. A. B. McDonald, “Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos,” Rev.Mod.Phys. 88 (2016) 030502.
  3. P. Minkowski, “μ→e⁢γ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ at a Rate of One Out of 109superscript10910^{9}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT Muon Decays?,” Phys. Lett. B 67 (1977) 421–428.
  4. T. Yanagida, “Horizontal gauge symmetry and masses of neutrinos,” Conf. Proc. C 7902131 (1979) 95–99.
  5. R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation,” Phys. Rev. Lett. 44 (1980) 912.
  6. M. Gell-Mann, P. Ramond, and R. Slansky, “Complex Spinors and Unified Theories,” vol. C790927, pp. 315–321. 1979. arXiv:1306.4669 [hep-th].
  7. J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) x U(1) Theories,” Phys. Rev. D 22 (1980) 2227.
  8. E. K. Akhmedov et al., “Left-right symmetry breaking in NJL approach,” Phys.Lett.B 368 (1996) 270–280, arXiv:hep-ph/9507275 [hep-ph].
  9. E. K. Akhmedov et al., “Dynamical left-right symmetry breaking,” Phys.Rev.D 53 (1996) 2752–2780, arXiv:hep-ph/9509255 [hep-ph].
  10. M. Malinsky, J. Romao, and J. W. F. Valle, “Novel supersymmetric SO(10) seesaw mechanism,” Phys.Rev.Lett. 95 (2005) 161801, arXiv:hep-ph/0506296 [hep-ph].
  11. R. Mohapatra and J. W. F. Valle, “Neutrino Mass and Baryon Number Nonconservation in Superstring Models,” vol. 34, p. 1642. 1986.
  12. M. Gonzalez-Garcia and J. W. F. Valle, “Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models,” Phys.Lett. B216 (1989) 360–366.
  13. J. Bernabeu et al., “Lepton Flavor Nonconservation at High-Energies in a Superstring Inspired Standard Model,” Phys.Lett.B 187 (1987) 303–308.
  14. M. Gonzalez-Garcia and J. W. F. Valle, “Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models,” Phys.Lett.B 216 (1989) 360–366.
  15. A. Abada, M. E. Krauss, W. Porod, F. Staub, A. Vicente, and C. Weiland, “Lepton flavor violation in low-scale seesaw models: SUSY and non-SUSY contributions,” JHEP 11 (2014) 048, arXiv:1408.0138 [hep-ph].
  16. M. Lindner, M. Platscher, and F. S. Queiroz, “A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation,” Phys. Rept. 731 (2018) 1–82, arXiv:1610.06587 [hep-ph].
  17. C. Hagedorn, J. Kriewald, J. Orloff, and A. M. Teixeira, “Flavour and CP symmetries in the inverse seesaw,” Eur. Phys. J. C 82 no. 3, (2022) 194, arXiv:2107.07537 [hep-ph].
  18. M. Dittmar, A. Santamaria, M. Gonzalez-Garcia, and J. W. F. Valle, “Production Mechanisms and Signatures of Isosinglet Neutral Heavy Leptons in Z0superscript𝑍0Z^{0}italic_Z start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT Decays,” Nucl.Phys.B 332 (1990) 1–19.
  19. M. Gonzalez-Garcia, A. Santamaria, and J. W. F. Valle, “Isosinglet Neutral Heavy Lepton Production in Z𝑍Zitalic_Z Decays and Neutrino Mass,” Nucl.Phys.B 342 (1990) 108–126.
  20. A. Atre, T. Han, S. Pascoli, and B. Zhang, “The Search for Heavy Majorana Neutrinos,” JHEP 05 (2009) 030, arXiv:0901.3589 [hep-ph].
  21. J. Aguilar-Saavedra et al., “Flavour in heavy neutrino searches at the LHC,” Phys.Rev.D 85 (2012) 091301, arXiv:1203.5998 [hep-ph].
  22. S. Das, F. Deppisch, O. Kittel, and J. W. F. Valle, “Heavy Neutrinos and Lepton Flavour Violation in Left-Right Symmetric Models at the LHC,” Phys.Rev.D 86 (2012) 055006, arXiv:1206.0256 [hep-ph].
  23. F. F. Deppisch, N. Desai, and J. W. F. Valle, “Is charged lepton flavor violation a high energy phenomenon?,” Phys.Rev.D 89 (2014) 051302, arXiv:1308.6789 [hep-ph].
  24. S. Antusch and O. Fischer, “Testing sterile neutrino extensions of the Standard Model at future lepton colliders,” JHEP 05 (2015) 053, arXiv:1502.05915 [hep-ph].
  25. F. F. Deppisch, P. S. Bhupal Dev, and A. Pilaftsis, “Neutrinos and Collider Physics,” New J. Phys. 17 no. 7, (2015) 075019, arXiv:1502.06541 [hep-ph].
  26. M. Hirsch and Z. S. Wang, “Heavy neutral leptons at ANUBIS,” Phys. Rev. D 101 no. 5, (2020) 055034, arXiv:2001.04750 [hep-ph].
  27. G. Cottin et al., “Long-lived heavy neutral leptons with a displaced shower signature at CMS,” JHEP 02 (2023) 011, arXiv:2210.17446 [hep-ph].
  28. G. Chauhan, P. S. B. Dev, I. Dubovyk, B. Dziewit, W. Flieger, K. Grzanka, J. Gluza, B. Karmakar, and S. Zieba, “Phenomenology of Lepton Masses and Mixing with Discrete Flavor Symmetries, ,” arXiv:2310.20681 [hep-ph].
  29. A. Batra, P. Bharadwaj, S. Mandal, R. Srivastava, and J. W. F. Valle, “Phenomenology of the simplest linear seesaw mechanism,” JHEP 07 (2023) 221, arXiv:2305.00994 [hep-ph].
  30. F. Escrihuela et al., “On the description of nonunitary neutrino mixing,” Phys.Rev. D92 (2015) 053009, arXiv:1503.08879 [hep-ph].
  31. M. Blennow, P. Coloma, E. Fernandez-Martinez, J. Hernandez-Garcia, and J. Lopez-Pavon, “Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions,” JHEP 04 (2017) 153, arXiv:1609.08637 [hep-ph].
  32. A. Abada, D. Das, A. M. Teixeira, A. Vicente, and C. Weiland, “Tree-level lepton universality violation in the presence of sterile neutrinos: impact for RKsubscript𝑅𝐾R_{K}italic_R start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT and Rπsubscript𝑅𝜋R_{\pi}italic_R start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT,” JHEP 02 (2013) 048, arXiv:1211.3052 [hep-ph].
  33. A. Abada, A. M. Teixeira, A. Vicente, and C. Weiland, “Sterile neutrinos in leptonic and semileptonic decays,” JHEP 02 (2014) 091, arXiv:1311.2830 [hep-ph].
  34. O. G. Miranda, D. K. Papoulias, O. Sanders, M. Tórtola, and J. W. F. Valle, “Low-energy probes of sterile neutrino transition magnetic moments,” JHEP 12 (2021) 191, arXiv:2109.09545 [hep-ph].
  35. T. Schwetz and A. Segarra, “T violation in nonstandard neutrino oscillation scenarios,” Phys. Rev. D 105 no. 5, (2022) 055001, arXiv:2112.08801 [hep-ph].
  36. T. Schwetz and A. Segarra, “Model-Independent Test of T Violation in Neutrino Oscillations,” Phys. Rev. Lett. 128 no. 9, (2022) 091801, arXiv:2106.16099 [hep-ph].
  37. J. Tang, S. Vihonen, and Y. Xu, “Precision measurements and tau neutrino physics in a future accelerator neutrino experiment,” Commun. Theor. Phys. 74 no. 3, (2022) 035201, arXiv:2108.11107 [hep-ph].
  38. J. Arrington et al., “Physics Opportunities for the Fermilab Booster Replacement,” arXiv:2203.03925 [hep-ph].
  39. F. Capozzi, C. Giunti, and C. A. Ternes, “Improved sensitivities of ESSν𝜈\nuitalic_νSB from a two-detector fit,” JHEP 04 (2023) 130, arXiv:2302.07154 [hep-ph].
  40. S. R. Soleti, P. Coloma, J. J. G. Cadenas, and A. Cabrera, “Search for Hidden Neutrinos at the European Spallation Source: the SHiNESS experiment,” arXiv:2311.18509 [hep-ex].
  41. S. M. Boucenna, S. Morisi, and J. W. F. Valle, “The low-scale approach to neutrino masses,” Adv.High Energy Phys. 2014 (2014) 831598, arXiv:1404.3751 [hep-ph].
  42. Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, “Spontaneously Broken Lepton Number and Cosmological Constraints on the Neutrino Mass Spectrum,” Phys. Rev. Lett. 45 (1980) 1926.
  43. Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, “Are There Real Goldstone Bosons Associated with Broken Lepton Number?,” Phys. Lett. B 98 (1981) 265–268.
  44. J. Schechter and J. W. F. Valle, “Neutrino Decay and Spontaneous Violation of Lepton Number,” Phys. Rev. D 25 (1982) 774.
  45. G. Gelmini and M. Roncadelli, “Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number,” Phys. Lett. B 99 (1981) 411–415.
  46. C. Aulakh and R. N. Mohapatra, “Neutrino as the Supersymmetric Partner of the Majoron,” Phys. Lett. B 119 (1982) 136–140.
  47. D. Baumann, D. Green, and B. Wallisch, “New Target for Cosmic Axion Searches,” Phys. Rev. Lett. 117 no. 17, (2016) 171301, arXiv:1604.08614 [astro-ph.CO].
  48. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  49. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., “Precision electroweak measurements on the Z𝑍Zitalic_Z resonance,” Phys. Rept. 427 (2006) 257–454, arXiv:hep-ex/0509008.
  50. A. Herrero-Brocal and A. Vicente, “The majoron coupling to charged leptons,” JHEP 01 (2024) 078, arXiv:2311.10145 [hep-ph].
  51. A. Pilaftsis, “Astrophysical and terrestrial constraints on singlet Majoron models,” Phys. Rev. D 49 (1994) 2398–2404, arXiv:hep-ph/9308258.
  52. C. Garcia-Cely and J. Heeck, “Neutrino Lines from Majoron Dark Matter,” JHEP 05 (2017) 102, arXiv:1701.07209 [hep-ph].
  53. J. Heeck and H. H. Patel, “Majoron at two loops,” Phys. Rev. D 100 no. 9, (2019) 095015, arXiv:1909.02029 [hep-ph].
  54. A. de Giorgi, L. Merlo, X. Ponce Díaz, and S. Rigolin, “The Minimal Massive Majoron Seesaw Model,” arXiv:2312.13417 [hep-ph].
  55. D. Fontes, J. C. Romao, and J. W. F. Valle, “Electroweak Breaking and Higgs Boson Profile in the Simplest Linear Seesaw Model,” JHEP 10 (2019) 245, arXiv:1908.09587 [hep-ph].
  56. S. Boulebnane, J. Heeck, A. Nguyen, and D. Teresi, “Cold light dark matter in extended seesaw models,” JCAP 04 (2018) 006, arXiv:1709.07283 [hep-ph].
  57. P. Escribano and A. Vicente, “Ultralight scalars in leptonic observables,” JHEP 03 (2021) 240, arXiv:2008.01099 [hep-ph].
  58. L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli, “The landscape of QCD axion models,” Phys. Rept. 870 (2020) 1–117, arXiv:2003.01100 [hep-ph].
  59. L. Calibbi, D. Redigolo, R. Ziegler, and J. Zupan, “Looking forward to lepton-flavor-violating ALPs,” JHEP 09 (2021) 173, arXiv:2006.04795 [hep-ph].
  60. D. Croon, G. Elor, R. K. Leane, and S. D. McDermott, “Supernova Muons: New Constraints on Z𝑍Zitalic_Z’ Bosons, Axions and ALPs,” JHEP 01 (2021) 107, arXiv:2006.13942 [hep-ph].
  61. A. Caputo, G. Raffelt, and E. Vitagliano, “Muonic boson limits: Supernova redux,” Phys. Rev. D 105 no. 3, (2022) 035022, arXiv:2109.03244 [hep-ph].
  62. A. Jodidio et al., “Search for Right-Handed Currents in Muon Decay,” Phys. Rev. D 34 (1986) 1967. [Erratum: Phys.Rev.D 37, 237 (1988)].
  63. M. Hirsch, A. Vicente, J. Meyer, and W. Porod, “Majoron emission in muon and tau decays revisited,” Phys. Rev. D 79 (2009) 055023, arXiv:0902.0525 [hep-ph]. [Erratum: Phys.Rev.D 79, 079901 (2009)].
  64. Belle-II Collaboration, I. Adachi et al., “Search for Lepton-Flavor-Violating τ𝜏\tauitalic_τ Decays to a Lepton and an Invisible Boson at Belle II,” Phys. Rev. Lett. 130 no. 18, (2023) 181803, arXiv:2212.03634 [hep-ex].
  65. Mu3e Collaboration, G. Hesketh, S. Hughes, A.-K. Perrevoort, and N. Rompotis, “The Mu3e Experiment,” in Snowmass 2021. 4, 2022. arXiv:2204.00001 [hep-ex].
  66. Mu3e Collaboration, A.-K. Perrevoort, “Charged lepton flavour violation - Overview of current experimental limits and future plans,” PoS DISCRETE2022 (2024) 015.
  67. MEG Collaboration, A. M. Baldini et al., “Search for the lepton flavour violating decay μ+→e+⁢γ→superscript𝜇superscript𝑒𝛾\mu^{+}\rightarrow e^{+}\gammaitalic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_γ with the full dataset of the MEG experiment,” Eur. Phys. J. C 76 no. 8, (2016) 434, arXiv:1605.05081 [hep-ex].
  68. MEG II Collaboration, A. M. Baldini et al., “The Search for μ+→e+⁢γ→superscript𝜇superscript𝑒𝛾\mu^{+}\to e^{+}\gammaitalic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_γ with 10−14superscript101410^{-14}10 start_POSTSUPERSCRIPT - 14 end_POSTSUPERSCRIPT Sensitivity: The Upgrade of the MEG Experiment,” Symmetry 13 no. 9, (2021) 1591, arXiv:2107.10767 [hep-ex].
  69. L. Lavoura, “General formulae for f1→f2⁢γ→subscript𝑓1subscript𝑓2𝛾f_{1}\to f_{2}\gammaitalic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT → italic_f start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_γ,” Eur. Phys. J. C 29 (2003) 191–195, arXiv:hep-ph/0302221.
  70. J. A. Casas and A. Ibarra, “Oscillating neutrinos and μ→e,γ→𝜇𝑒𝛾\mu\to e,\gammaitalic_μ → italic_e , italic_γ,” Nucl. Phys. B 618 (2001) 171–204, arXiv:hep-ph/0103065.
  71. I. Cordero-Carrión, M. Hirsch, and A. Vicente, “Master Majorana neutrino mass parametrization,” Phys. Rev. D 99 no. 7, (2019) 075019, arXiv:1812.03896 [hep-ph].
  72. I. Cordero-Carrión, M. Hirsch, and A. Vicente, “General parametrization of Majorana neutrino mass models,” Phys. Rev. D 101 no. 7, (2020) 075032, arXiv:1912.08858 [hep-ph].
  73. P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle, “2020 global reassessment of the neutrino oscillation picture,” JHEP 02 (2021) 071, arXiv:2006.11237 [hep-ph].
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.