Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

Axions in the Dark Dimension (2404.15414v2)

Published 23 Apr 2024 in hep-th and hep-ph

Abstract: The dark dimension scenario, which is motivated from Swampland principles and predicts a single micron scale extra dimension, suggests a consistent framework for the dark sector of the universe. We consider the implications of this scenario for the QCD axion. We find that in the scenario in which the axion is localized on the standard model brane (which we will argue is natural), a combination of theoretical (being bounded by the 5D Planck mass) and observational constraints forces it to have decay constant in a narrow range $f \sim 109 - 10{10}$ GeV. This corresponds to a mass for the QCD axion of $m_a \sim (1 - 10)$ meV. The axion mass surprisingly coincides with the mass scale for the dark energy, the dark matter tower, and the neutrinos. In this scenario axions are not expected to form a large fraction of the dark matter but nevertheless this range of axion parameters is accessible to observations in near future experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. M. Montero, C. Vafa, and I. Valenzuela, “The dark dimension and the Swampland,” JHEP 02 (2023) 022, arXiv:2205.12293 [hep-th].
  2. E. Gonzalo, M. Montero, G. Obied, and C. Vafa, “Dark dimension gravitons as dark matter,” JHEP 11 (2023) 109, arXiv:2209.09249 [hep-ph].
  3. J. A. P. Law-Smith, G. Obied, A. Prabhu, and C. Vafa, “Astrophysical Constraints on Decaying Dark Gravitons,” arXiv:2307.11048 [hep-ph].
  4. G. Obied, C. Dvorkin, E. Gonzalo, and C. Vafa, “Dark dimension and decaying dark matter gravitons,” Phys. Rev. D 109 no. 6, (2024) 063540, arXiv:2311.05318 [astro-ph.CO].
  5. L. A. Anchordoqui, I. Antoniadis, and D. Lust, “The Dark Dimension, the Swampland, and the Dark Matter Fraction Composed of Primordial Near-Extremal Black Holes,” arXiv:2401.09087 [hep-th].
  6. C. Vafa, “Swamplandish Unification of the Dark Sector,” arXiv:2402.00981 [hep-ph].
  7. R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Instantons,” Phys. Rev. Lett. 38 (1977) 1440–1443.
  8. N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, “The String landscape, black holes and gravity as the weakest force,” JHEP 06 (2007) 060, arXiv:hep-th/0601001.
  9. A. Lella, P. Carenza, G. Co’, G. Lucente, M. Giannotti, A. Mirizzi, and T. Rauscher, “Getting the most on supernova axions,” Phys. Rev. D 109 no. 2, (2024) 023001, arXiv:2306.01048 [hep-ph].
  10. S. Chakraborty, A. Gupta, and M. Vanvlasselaer, “Anomaly Induced Supernovae Cooling: New Contribution from Axions,” arXiv:2403.12169 [hep-ph].
  11. J. Preskill, M. B. Wise, and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. B 120 (1983) 127–132.
  12. L. F. Abbott and P. Sikivie, “A Cosmological Bound on the Invisible Axion,” Phys. Lett. B 120 (1983) 133–136.
  13. M. Dine and W. Fischler, “The Not So Harmless Axion,” Phys. Lett. B 120 (1983) 137–141.
  14. M. Demirtas, N. Gendler, C. Long, L. McAllister, and J. Moritz, “PQ axiverse,” JHEP 06 (2023) 092, arXiv:2112.04503 [hep-th].
  15. N. Gendler, D. J. E. Marsh, L. McAllister, and J. Moritz, “Glimmers from the Axiverse,” arXiv:2309.13145 [hep-th].
  16. V. M. Mehta, M. Demirtas, C. Long, D. J. E. Marsh, L. McAllister, and M. J. Stott, “Superradiance in string theory,” JCAP 07 (2021) 033, arXiv:2103.06812 [hep-th].
  17. M. Demirtas, C. Long, L. McAllister, and M. Stillman, “The Kreuzer-Skarke Axiverse,” JHEP 04 (2020) 138, arXiv:1808.01282 [hep-th].
  18. P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 06 (2006) 051, arXiv:hep-th/0605206.
  19. K. R. Dienes, E. Dudas, and T. Gherghetta, “Invisible axions and large radius compactifications,” Phys. Rev. D 62 (2000) 105023, arXiv:hep-ph/9912455.
  20. L. Di Lella, A. Pilaftsis, G. Raffelt, and K. Zioutas, “Search for solar Kaluza-Klein axions in theories of low scale quantum gravity,” Phys. Rev. D 62 (2000) 125011, arXiv:hep-ph/0006327.
  21. E. Ma, M. Raidal, and U. Sarkar, “Low scale axion from large extra dimensions,” Phys. Lett. B 504 (2001) 296–300, arXiv:hep-ph/0007321.
  22. R. Horvat, M. Krcmar, and B. Lakic, “CERN Axion Solar Telescope as a probe of large extra dimensions,” Phys. Rev. D 69 (2004) 125011, arXiv:astro-ph/0312030.
  23. H. Collins and R. Holman, “The Invisible axion in a Randall-Sundrum universe,” Phys. Rev. D 67 (2003) 105004, arXiv:hep-ph/0210110.
  24. C. Abel et al., “Measurement of the Permanent Electric Dipole Moment of the Neutron,” Phys. Rev. Lett. 124 no. 8, (2020) 081803, arXiv:2001.11966 [hep-ex].
  25. C. A. Baker et al., “An Improved experimental limit on the electric dipole moment of the neutron,” Phys. Rev. Lett. 97 (2006) 131801, arXiv:hep-ex/0602020.
  26. J. M. Pendlebury et al., “Revised experimental upper limit on the electric dipole moment of the neutron,” Phys. Rev. D 92 no. 9, (2015) 092003, arXiv:1509.04411 [hep-ex].
  27. A. Hook, “TASI Lectures on the Strong CP Problem and Axions,” PoS TASI2018 (2019) 004, arXiv:1812.02669 [hep-ph].
  28. J. Cheng and N. Gendler, “Universal scalings in the axiverse.” to appear.
  29. F. Capozzi and G. Raffelt, “Axion and neutrino bounds improved with new calibrations of the tip of the red-giant branch using geometric distance determinations,” Phys. Rev. D 102 no. 8, (2020) 083007, arXiv:2007.03694 [astro-ph.SR].
  30. M. Buschmann, C. Dessert, J. W. Foster, A. J. Long, and B. R. Safdi, “Upper Limit on the QCD Axion Mass from Isolated Neutron Star Cooling,” Phys. Rev. Lett. 128 no. 9, (2022) 091102, arXiv:2111.09892 [hep-ph].
  31. F. Esser, M. Madigan, V. Sanz, and M. Ubiali, “On the coupling of axion-like particles to the top quark,” JHEP 09 (2023) 063, arXiv:2303.17634 [hep-ph].
  32. CAST Collaboration, V. Anastassopoulos et al., “New CAST Limit on the Axion-Photon Interaction,” Nature Phys. 13 (2017) 584–590, arXiv:1705.02290 [hep-ex].
  33. A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi, and O. Straniero, “Revisiting the bound on axion-photon coupling from Globular Clusters,” Phys. Rev. Lett. 113 no. 19, (2014) 191302, arXiv:1406.6053 [astro-ph.SR].
  34. M. J. Dolan, F. J. Hiskens, and R. R. Volkas, “Advancing globular cluster constraints on the axion-photon coupling,” JCAP 10 (2022) 096, arXiv:2207.03102 [hep-ph].
  35. D. J. E. Marsh, “Axion Cosmology,” Phys. Rept. 643 (2016) 1–79, arXiv:1510.07633 [astro-ph.CO].
  36. IAXO Collaboration, E. Armengaud et al., “Physics potential of the International Axion Observatory (IAXO),” JCAP 06 (2019) 047, arXiv:1904.09155 [hep-ph].
  37. IAXO Collaboration, A. Abeln et al., “Conceptual design of BabyIAXO, the intermediate stage towards the International Axion Observatory,” JHEP 05 (2021) 137, arXiv:2010.12076 [physics.ins-det].
  38. J. J. Heckman, “Particle Physics Implications of F-theory,” Ann. Rev. Nucl. Part. Sci. 60 (2010) 237–265, arXiv:1001.0577 [hep-th].
  39. J. J. Heckman and C. Vafa, “From F-theory GUTs to the LHC,” arXiv:0809.3452 [hep-ph].
  40. Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].
  41. K. R. Dienes, E. Dudas, and T. Gherghetta, “Neutrino oscillations without neutrino masses or heavy mass scales: A Higher dimensional seesaw mechanism,” Nucl. Phys. B 557 (1999) 25, arXiv:hep-ph/9811428.
  42. N. Arkani-Hamed, S. Dimopoulos, G. R. Dvali, and J. March-Russell, “Neutrino masses from large extra dimensions,” Phys. Rev. D 65 (2001) 024032, arXiv:hep-ph/9811448.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com