Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-accurate and efficient numerical algorithms for the self-consistent field theory of liquid-crystalline polymers (2404.15363v2)

Published 18 Apr 2024 in math.NA, cs.NA, and physics.comp-ph

Abstract: Self-consistent field theory (SCFT) is one of the most widely-used framework in studying the equilibrium phase behaviors of inhomogenous polymers. For liquid crystalline polymeric systems, the main numerical challenges of solving SCFT encompass efficiently solving plenty of six dimensional partial differential equations (PDEs), precisely determining the subtle energy difference among self-assembled structures, and developing effective iterative methods for nonlinear SCF iteration. To address these challenges, this work introduces a suite of high-order and efficient numerical methods tailored for SCFT of liquid-crystalline polymers. These methods include various advaced PDE solvers, an improved Anderson iteration algorithm to accelerate SCFT calculations, and an optimization technique of adjusting the computational domain during the SCF iterations. Extensive numerical tests demonstrate the efficiency of the proposed methods. Based on these algorithms, we further explore the self-assembly behavior of liquid crystalline polymers through simulations in four, five, and six dimensions, uncovering intricate three-dimensional spatial structures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. P.G.De. Gennes and J. Prost. The Physics of Liquid Crystal. Oxford University Press, 1993.
  2. F. Schmid. Self-consistent-field theories for complex fluids. J. Phys. Condens. Matter, 10(37):8105–8138, 1998.
  3. G.H. Fredrickson. The Equilibrium Theory of Inhomogeneous Polymers. Oxford University Press, 2006.
  4. Y. Jiang and J.Z.Y. Chen. Isotropic-Nematic interface in a lyotropic system of wormlike chains with the onsager interaction. Macromolecules, 43(24):10668–10678, 2010.
  5. Topological defects in two-dimensional liquid crystals confined by a box. Phys. Rev. E, 97:052707, 2018.
  6. M. Matsen and M. Schick. Stable and unstable phases of a linear multiblock copolymer melt. Macromolecules, 27(24):7157–7163, 1994.
  7. F. Drolet and G.H. Fredrickson. Combinatorial screening of complex block copolymer assembly with self-consistent field theory. Phys. Rev. Lett., 83(21):4317–4320, 1999.
  8. M.W. Matsen. Melts of semiflexible diblock copolymer. J. Chem. Phys., 104(19):7758–7764, 1996.
  9. Phase transitions in semiflexible–rod diblock copolymers: A self-consistent field theory. Soft Matter, 10:8932–8944, 2014.
  10. Y. Jiang and J.Z.Y. Chen. Self-consistent field theory and numerical scheme for calculating the phase diagram of wormlike diblock copolymers. Phys. Rev. E, 88(4):042603, 2013.
  11. Phase behavior of semiflexible-coil diblock copolymers: A hybrid numerical scft approach. Soft Matter, 7:929–938, 2011.
  12. Theory of polygonal phases self-assembled from t-shaped liquid crystalline molecules. Macromolecules, 57(5):2154–2164, 2024.
  13. Archimedean tiling patterns self-assembled from x-shaped rod-coil copolymers with hydrogen bonds. Macromolecules, 51(19):7807–7816, 2018.
  14. New numerical implementation of self-consistent field theory for semiflexible polymers. Macromolecules, 42(16):6300–6309, 2009.
  15. The statistical mechanical theory of stiff chains. J. Phys. Soc. Jpn., 22(1):219–226, 1967.
  16. Y. Jiang and J.Z.Y. Chen. Influence of chain rigidity on the phase behavior of wormlike diblock copolymers. Phys. Rev. Lett., 110(13):138305, 2013.
  17. Efficient numerical schemes for solving the self-consistent field equations of flexible-semiflexible diblock copolymers. Math.Methods Appl. Sci., 38(18):4553–4563, 2015.
  18. Dependence of the disorder-lamellar stability boundary of a melt of asymmetric wormlike A B diblock copolymers on the chain rigidity. Phys. Rev. E, 84:041803, 2011.
  19. H.D. Ceniceros. Efficient order-adaptive methods for polymer self-consistent field theory. J. Comput. Phys., 386:9 – 21, 2019.
  20. Numerical solution of polymer self-consistent field theory. Multiscale Model. Simul., 2(3):452–474, 2004.
  21. Analytic structure of the SCFT energy functional of multicomponent block copolymers. Commun Comput Phys., 17(5):1360–1387, 2015.
  22. Self-consistent field theory simulations of block copolymer assembly on a sphere. Phys. Rev. E, 75(3):031802, 2007.
  23. Stability of the gyroid phase in diblock copolymers at strong segregation. Macromolecules, 39(7):2449–2451, 2006.
  24. Self-assembly of asymmetrically interacting ABC star triblock copolymer melts. J. Phys. Chem. B, 119(45):14551–14562, 2015.
  25. Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math., 40(2):241–266, 2000.
  26. SPHEREPACK 3.0: A model development facility. Mon. Wea. Rev., 127(8):1872–1878, 1999.
  27. Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal, 32(3):797–823, 1995.
  28. G. Wanner and E. Hairer. Solving ordinary differential equations II. Springer Berlin Heidelberg, 1996.
  29. Non-lamellae structures of coil–semiflexible diblock copolymers. Soft Matter, 9(1):69–81, 2013.
  30. Self-assembly of rod–coil block copolymers. Mater. Sci. Eng. R Rep., 62(2):37–66, 2008.
  31. D.G. Anderson. Iterative procedures for nonlinear integral equations. J. ACM, 12(4):547–560, 1965.
  32. Accelerating self-consistent field theory of block polymers in a variable unit cell. J. Chem. Phys., 146(24):244902, 06 2017.
  33. Anderson acceleration of the jacobi iterative method: An efficient alternative to krylov methods for large, sparse linear systems. J. Comput. Phys., 306:43–54, 2016.
  34. Anderson-accelerated convergence of picard iterations for incompressible navier–stokes equations. SIAM J. Numer. Anal., 57(2):615–637, 2019.
  35. J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Media, 2006.
  36. J. Barzilai and J.M. Borwein. Two-point step size gradient methods. IMA J. Numer. Anal., 8:141–148, 1988.
  37. YH. Dai. A new analysis on the barzilai-borwein gradient method. J. Oper. Res. Soc. China, 1(2):187–198, 2013.
  38. M.W. Matsen and C. Barrett. Liquid-crystalline behavior of rod-coil diblock copolymers. J. Chem. Phys., 109(10):4108–4118, 1998.
  39. A.N. Semenov and A. Subbotin. Theory of smectic ordering in melts of polymers containing mesogenic units. Sov. phys. JETP, 101:1233–1245, 1992.
  40. Self-assembled smectic phases in rod-coil block copolymers. Science, 273(5273):343–346, 1996.
  41. Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules, 28(26):8796–8806, 1995.
  42. Discovery of new metastable patterns in diblock copolymers. Commun Comput Phys., 14(2):443–460, 2013.
  43. Spectral method for exploring patterns of diblock copolymers. J. Comput. Phys., 229:7796–7805, 2010.
Citations (2)

Summary

We haven't generated a summary for this paper yet.