Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Tensor networks based quantum optimization algorithm (2404.15048v1)

Published 23 Apr 2024 in quant-ph

Abstract: In optimization, one of the well-known classical algorithms is power iterations. Simply stated, the algorithm recovers the dominant eigenvector of some diagonalizable matrix. Since numerous optimization problems can be formulated as an eigenvalue/eigenvector search, this algorithm features wide applicability. Operationally, power iterations consist of performing repeated matrix-to-vector multiplications (or MatVec) followed by a renormilization step in order to converge to the dominant eigenvalue/eigenvector. However, classical realizations, including novel tensor network based approaches, necessitate an exponential scaling for the algorithm's run-time. In this paper, we propose a quantum realiziation to circumvent this pitfall. Our methodology involves casting low-rank representations; Matrix Product Operators (MPO) for matrices and Matrix Product States (MPS) for vectors, into quantum circuits. Specifically, we recover a unitary approximation by variationally minimizing the Frobenius distance between a target MPO and an MPO ansatz wherein the tensor cores are constrained to unitaries. Such an unitary MPO can easily be implemented as a quantum circuit with the addition of ancillary qubits. Thereafter, with appropriate initialization and post-selection on the ancillary space, we realize a single iteration of the classical algorithm. With our proposed methodology, power iterations can be realized entirely on a quantum computer via repeated, static circuit blocks; therefore, a run-time advantage can indeed be guaranteed. Moreover, by exploiting Riemannian optimization and cross-approximation techniques, our methodology becomes instance agnostic and thus allows one to address black-box optimization within the framework of quantum computing.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com