2000 character limit reached
Derived functors and Hilbert polynomials over hypersurface rings (2404.14938v2)
Published 23 Apr 2024 in math.AC
Abstract: Let $(A,\mathfrak{m})$ be a hypersurface local ring of dimension $d \geq 1$ and let $I$ be an $\mathfrak{m}$-primary ideal. We show that there is a non-negative integer $r_I$ (depending only on $I$) such that if $M$ is any non-free maximal Cohen-Macaulay $A$-module the function $n \rightarrow \ell(TorA_1(M, A/I{n+1}))$ (which is of polynomial type) has degree $r_I$. Analogous results hold for Hilbert polynomials associated to Ext-functors. Surprisingly a key ingredient is the classification of thick subcategories of the stable category of MCM $A$-modules (obtained by Takahashi).