Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Eigenvector distributions and optimal shrinkage estimators for large covariance and precision matrices (2404.14751v1)

Published 23 Apr 2024 in math.ST, math.PR, and stat.TH

Abstract: This paper focuses on investigating Stein's invariant shrinkage estimators for large sample covariance matrices and precision matrices in high-dimensional settings. We consider models that have nearly arbitrary population covariance matrices, including those with potential spikes. By imposing mild technical assumptions, we establish the asymptotic limits of the shrinkers for a wide range of loss functions. A key contribution of this work, enabling the derivation of the limits of the shrinkers, is a novel result concerning the asymptotic distributions of the non-spiked eigenvectors of the sample covariance matrices, which can be of independent interest.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com