Papers
Topics
Authors
Recent
Search
2000 character limit reached

Eigenvector distributions and optimal shrinkage estimators for large covariance and precision matrices

Published 23 Apr 2024 in math.ST, math.PR, and stat.TH | (2404.14751v1)

Abstract: This paper focuses on investigating Stein's invariant shrinkage estimators for large sample covariance matrices and precision matrices in high-dimensional settings. We consider models that have nearly arbitrary population covariance matrices, including those with potential spikes. By imposing mild technical assumptions, we establish the asymptotic limits of the shrinkers for a wide range of loss functions. A key contribution of this work, enabling the derivation of the limits of the shrinkers, is a novel result concerning the asymptotic distributions of the non-spiked eigenvectors of the sample covariance matrices, which can be of independent interest.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.