Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An almost sharp quantitative version of the Duffin-Schaeffer conjecture (2404.14628v2)

Published 22 Apr 2024 in math.NT

Abstract: We prove a quantitative version of the Duffin-Schaeffer conjecture with an almost sharp error term. Precisely, let $\psi:\mathbb{N}\to[0,1/2]$ be a function such that the series $\sum_{q=1}\infty \varphi(q)\psi(q)/q$ diverges. In addition, given $\alpha\in\mathbb{R}$ and $Q\geqslant1$, let $N(\alpha;Q)$ be the number of coprime pairs $(a,q)\in\mathbb{Z}\times\mathbb{N}$ with $q\leqslant Q$ and $|\alpha-a/q|<\psi(q)/q$. Lastly, let $\Psi(Q)=\sum_{q\leqslant Q}2\varphi(q)\psi(q)/q$, which is the expected value of $N(\alpha;Q)$ when $\alpha$ is uniformly chosen from $[0, 1]$. We prove that $N(\alpha;Q)=\Psi(Q)+O_{\alpha,\varepsilon}(\Psi(Q){1/2+\varepsilon})$ for almost all $\alpha$ (in the Lebesgue sense) and for every fixed $\varepsilon>0$. This improves upon results of Koukoulopoulos-Maynard and of Aistleitner-Borda-Hauke.

Citations (2)

Summary

We haven't generated a summary for this paper yet.