Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Multiparameter Metrology: The Quantum Compass Solution (2404.14194v1)

Published 22 Apr 2024 in quant-ph

Abstract: We study optimal quantum sensing of multiple physical parameters using repeated measurements. In this scenario, the Fisher information framework sets the fundamental limits on sensing performance, yet the optimal states and corresponding measurements that attain these limits remain to be discovered. To address this, we extend the Fisher information approach with a second optimality requirement for a sensor to provide unambiguous estimation of unknown parameters. We propose a systematic method integrating Fisher information and Bayesian approaches to quantum metrology to identify the combination of input states and measurements that satisfies both optimality criteria. Specifically, we frame the optimal sensing problem as an optimization of an asymptotic Bayesian cost function that can be efficiently solved numerically and, in many cases, analytically. We refer to the resulting optimal sensor as a `quantum compass' solution, which serves as a direct multiparameter counterpart to the Greenberger-Horne-Zeilinger state-based interferometer, renowned for achieving the Heisenberg limit in single-parameter metrology. We provide exact quantum compass solutions for paradigmatic multiparameter problem of sensing two and three parameters using an SU(2) sensor. Our metrological cost function opens avenues for quantum variational techniques to design low-depth quantum circuits approaching the optimal sensing performance in the many-repetition scenario. We demonstrate this by constructing simple quantum circuits that achieve the Heisenberg limit for vector field and 3D rotations estimation using a limited set of gates available on a trapped-ion platform. Our work introduces and optimizes sensors for a practical notion of optimality, keeping in mind the ultimate goal of quantum sensors to precisely estimate unknown parameters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. R. Demkowicz-Dobrzański, W. Górecki, and M. Guţă, Multi-parameter estimation beyond quantum fisher information, Journal of Physics A: Mathematical and Theoretical 53, 363001 (2020).
  2. M. Genovese, Real applications of quantum imaging, Journal of Optics 18, 073002 (2016).
  3. M. Tsang, R. Nair, and X.-M. Lu, Quantum theory of superresolution for two incoherent optical point sources, Phys. Rev. X 6, 031033 (2016).
  4. T. J. Proctor, P. A. Knott, and J. A. Dunningham, Multiparameter estimation in networked quantum sensors, Phys. Rev. Lett. 120, 080501 (2018).
  5. P. Sekatski, S. Wölk, and W. Dür, Optimal distributed sensing in noisy environments, Phys. Rev. Res. 2, 023052 (2020).
  6. Y. Yang, B. Yadin, and Z.-P. Xu, Quantum-enhanced metrology with network states (2023), arXiv:2307.07758 [quant-ph] .
  7. C. Vaneph, T. Tufarelli, and M. G. Genoni, Quantum estimation of a two-phase spin rotation, Quantum Measurements and Quantum Metrology 1, 12 (2013).
  8. T. Baumgratz and A. Datta, Quantum Enhanced Estimation of a Multidimensional Field, Physical Review Letters 116, 030801 (2016).
  9. W. Górecki and R. Demkowicz-Dobrzański, Multiparameter quantum metrology in the Heisenberg limit regime: Many-repetition scenario versus full optimization, Physical Review A 106, 012424 (2022).
  10. Incompatibility implies that the measurement of one parameter can impact the precision in measuring another parameter, rendering the construction of the optimal measurement a highly intricate task.
  11. K. Matsumoto, A new approach to the Cramér-Rao-type bound of the pure-state model, Journal of Physics A: Mathematical and General 35, 3111 (2002).
  12. Y. L. Len, Multiparameter estimation for qubit states with collective measurements: a case study, New Journal of Physics 24, 033037 (2022).
  13. J. Miyazaki and K. Matsumoto, Imaginarity-free quantum multiparameter estimation, Quantum 6, 665 (2022).
  14. A. DasGupta, Bayes procedures and posterior distributions, in Asymptotic Theory of Statistics and Probability (Springer New York, New York, NY, 2008) pp. 289–321.
  15. B. Kleijn and A. van der Vaart, The Bernstein-Von-Mises theorem under misspecification, Electronic Journal of Statistics 6, 354 (2012).
  16. A. Bhattacharyya, On some analogues of the amount of information and their use in statistical estimation (contd.), Sankhyā: The Indian Journal of Statistics (1933-1960) 8, 201 (1947).
  17. M. Gessner and A. Smerzi, Hierarchies of frequentist bounds for quantum metrology: From cramér-rao to barankin, Phys. Rev. Lett. 130, 260801 (2023).
  18. Specifically, a locally unbiased estimator satisfies \sum@⁢\slimits@𝝁⁢𝝃𝝁u⁢p⁢(𝝁|ϕ)=ϕ\sum@subscript\slimits@𝝁subscriptsuperscript𝝃u𝝁𝑝conditional𝝁bold-italic-ϕbold-italic-ϕ\sum@\slimits@_{\bm{\mu}}\bm{\xi}^{\rm u}_{\bm{\mu}}p(\bm{\mu}|\bm{\phi})=\bm{\phi}start_POSTSUBSCRIPT bold_italic_μ end_POSTSUBSCRIPT bold_italic_ξ start_POSTSUPERSCRIPT roman_u end_POSTSUPERSCRIPT start_POSTSUBSCRIPT bold_italic_μ end_POSTSUBSCRIPT italic_p ( bold_italic_μ | bold_italic_ϕ ) = bold_italic_ϕ and \sum@⁢\slimits@𝝁⁢𝝃𝝁u⁢∇p⁢(𝝁|ϕ)=𝟙\sum@subscript\slimits@𝝁subscriptsuperscript𝝃u𝝁∇𝑝conditional𝝁bold-italic-ϕdouble-struck-𝟙\sum@\slimits@_{\bm{\mu}}\bm{\xi}^{\rm u}_{\bm{\mu}}\nabla p(\bm{\mu}|\bm{\phi% })=\mathbb{1}start_POSTSUBSCRIPT bold_italic_μ end_POSTSUBSCRIPT bold_italic_ξ start_POSTSUPERSCRIPT roman_u end_POSTSUPERSCRIPT start_POSTSUBSCRIPT bold_italic_μ end_POSTSUBSCRIPT ∇ italic_p ( bold_italic_μ | bold_italic_ϕ ) = blackboard_𝟙.
  19. M. G. A. Paris, Quantum estimation for quantum technology, International Journal of Quantum Information 07, 125 (2009).
  20. A. Fujiwara and H. Nagaoka, Quantum fisher metric and estimation for pure state models, Physics Letters A 201, 119 (1995).
  21. J. J. Meyer, J. Borregaard, and J. Eisert, A variational toolbox for quantum multi-parameter estimation, npj Quantum Information 7, 89 (2021).
  22. T. K. Le, H. Q. Nguyen, and L. B. Ho, Variational quantum metrology for multiparameter estimation under dephasing noise (2023), arXiv:2305.08289 [quant-ph] .
  23. P. Sekatski, M. Skotiniotis, and W. Dür, Improved sensing with a single qubit, Phys. Rev. Lett. 118, 170801 (2017).
  24. K. Macieszczak, M. Fraas, and R. Demkowicz-Dobrzański, Bayesian quantum frequency estimation in presence of collective dephasing, New Journal of Physics 16, 113002 (2014).
  25. K. Chabuda, I. D. Leroux, and R. Demkowicz-Dobrzański, The quantum allan variance, New Journal of Physics 18, 083035 (2016).
  26. L. Pezzè and A. Smerzi, Quantum theory of phase estimation, in Atom Interferometry, Proceedings of the International School of Physics “Enrico Fermi”, Vol. 188, edited by M. A. K. Guglielmo M. Tino (IOS Press, 2014) pp. 691–741.
  27. A. Shankar and D. V. Vasilyev, Quantum compass solutions with anisotropic sensitivity, (Unpublished).
  28. P. Kolenderski and R. Demkowicz-Dobrzański, Optimal state for keeping reference frames aligned and the platonic solids, Phys. Rev. A 78, 052333 (2008).
  29. O. Giraud, P. Braun, and D. Braun, Quantifying quantumness and the quest for queens of quantum, New Journal of Physics 12, 063005 (2010).
  30. E. B. Saff and A. B. J. Kuijlaars, Distributing many points on a sphere, The Mathematical Intelligencer 19, 5 (1997).
  31. N. J. A. Sloane, R. H. Hardin, and W. D. Smith, Tables of spherical codes.
  32. I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Implementation of cavity squeezing of a collective atomic spin, Phys. Rev. Lett. 104, 073602 (2010).
  33. M. Mehboudi, A. Sanpera, and L. A. Correa, Thermometry in the quantum regime: recent theoretical progress, Journal of Physics A: Mathematical and Theoretical 52, 303001 (2019).
  34. J. Rubio, J. Anders, and L. A. Correa, Global quantum thermometry, Phys. Rev. Lett. 127, 190402 (2021).
  35. A. Hamann, P. Sekatski, and W. Dür, Optimal distributed multi-parameter estimation in noisy environments, Quantum Science and Technology 9, 035005 (2024).
  36. T. B. Mieling, C. Hilweg, and P. Walther, Measuring space-time curvature using maximally path-entangled quantum states, Phys. Rev. A 106, L031701 (2022).
  37. J. Rubio, P. Knott, and J. Dunningham, Non-asymptotic analysis of quantum metrology protocols beyond the cramér–rao bound, Journal of Physics Communications 2, 015027 (2018).
  38. S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański, Compatibility in multiparameter quantum metrology, Phys. Rev. A 94, 052108 (2016).
  39. A. S. Holevo, Probabilistic and statistical aspects of quantum theory, Vol. 1 (Springer Science & Business Media, 2011).
  40. M. Tsang, F. Albarelli, and A. Datta, Quantum semiparametric estimation, Phys. Rev. X 10, 031023 (2020).
  41. C. Radhakrishna Rao, Information and the accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc. 37, 81 (1945).
  42. H. Cramér, Mathematical Methods of Statistics (Princeton University Press, 1945).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com