Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Brane mechanics and gapped Lie n-algebroids (2404.14126v1)

Published 22 Apr 2024 in hep-th, math-ph, math.DG, and math.MP

Abstract: We draw a parallel between the BV/BRST formalism for higher-dimensional ($\ge 2$) Hamiltonian mechanics and higher notions of torsion and basic curvature tensors for generalized connections in specific Lie $n$-algebroids based on homotopy Poisson structures. The gauge systems we consider include Poisson sigma models in any dimension and ``generalised R-flux'' deformations thereof, such as models with an $(n+2)$-form-twisted R-Poisson target space. Their BV/BRST action includes interaction terms among the fields, ghosts and antifields whose coefficients acquire a geometric meaning by considering twisted Koszul multibrackets that endow the target space with a structure that we call a gapped almost Lie $n$-algebroid. Studying covariant derivatives along $n$-forms, we define suitable polytorsion and basic polycurvature tensors and identify them with the interaction coefficients in the gauge theory, thus relating models for topological $n$-branes to differential geometry on Lie $n$-algebroids.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. M. Henneaux and C. Teitelboim, “Quantization of Gauge Systems,” Princeton University Press, 1994
  2. G. Barnich, F. Brandt and M. Henneaux, “Local BRST cohomology in gauge theories,” Phys. Rep. 338 (2000), 439–569 [arXiv:hep-th/0002245 [hep-th]].
  3. B. Zwiebach, “Closed string field theory: Quantum action and the B-V master equation,” Nucl. Phys. B 390 (1993), 33–152 [arXiv:hep-th/9206084 [hep-th]].
  4. T. Lada and J. Stasheff, “Introduction to SH Lie algebras for physicists,” Int. J. Theor. Phys. 32 (1993), 1087–1104 [arXiv:hep-th/9209099 [hep-th]].
  5. O. Hohm and B. Zwiebach, “L∞subscript𝐿L_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT Algebras and Field Theory,” Fortsch. Phys. 65 (2017) no.3-4, 1700014 [arXiv:1701.08824 [hep-th]].
  6. N. Hitchin, “Generalized Calabi-Yau manifolds,” Quart. J. Math. 54 (2003), 281-308 [arXiv:math/0209099 [math.DG]].
  7. M. Gualtieri, “Generalized complex geometry,” Ann. Math. 174:1 (2011), 75–123 [arXiv:math/0401221 [math.DG]].
  8. M. Gualtieri, “Branes on Poisson varieties,” in Oscar Garcia-Prada, Jean Pierre Bourguignon, and Simon Salamon (eds), The Many Facets of Geometry: A Tribute to Nigel Hitchin (Oxford, 2010), doi:10.1093/acprof:oso/9780199534920.003.0018 [arXiv:0710.2719 [math.DG]].
  9. A. Coimbra, C. Strickland-Constable and D. Waldram, “Supergravity as Generalised Geometry I: Type II Theories,” JHEP 11 (2011), 091 [arXiv:1107.1733 [hep-th]].
  10. O. Hohm, C. Hull and B. Zwiebach, “Generalized metric formulation of double field theory,” JHEP 08 (2010), 008 [arXiv:1006.4823 [hep-th]].
  11. O. Hohm and B. Zwiebach, “Towards an invariant geometry of double field theory,” J. Math. Phys. 54 (2013), 032303 [arXiv:1212.1736 [hep-th]].
  12. B. Jurčo and J. Vysoký, “Courant Algebroid Connections and String Effective Actions,” Noncommutative Geometry and Physics 4 (2017) 211–265 [arXiv:1612.01540 [math-ph]].
  13. P. Ševera and F. Valach, “Courant Algebroids, Poisson–Lie T-Duality, and Type II Supergravities,” Commun. Math. Phys. 375 (2020) no.1, 307–344 [arXiv:1810.07763 [math.DG]].
  14. E. Boffo and P. Schupp, “Deformed graded Poisson structures, Generalized Geometry and Supergravity,” JHEP 01 (2020), 007 [arXiv:1903.09112 [hep-th]].
  15. P. Aschieri, F. Bonechi and A. Deser, “On Curvature and Torsion in Courant Algebroids,” Annales Henri Poincaré 22 (2021) no.7, 2475–2496 [arXiv:1910.11273 [math.DG]].
  16. B. Jurčo, F. Moučka and J. Vysoký, “Palatini variation in generalized geometry and string effective actions,” J. Geom. Phys. 191 (2023), 104909 [arXiv:2211.09138 [hep-th]].
  17. A. Chatzistavrakidis, “Topological field theories induced by twisted R-Poisson structure in any dimension,” JHEP 09 (2021), 045 [arXiv:2106.01067 [hep-th]].
  18. N. Ikeda, “Higher Dimensional Lie Algebroid Sigma Model with WZ Term,” Universe 7 (2021) no.10, 391 [arXiv:2109.02858 [hep-th]].
  19. P. Ševera, “Some title containing the words "homotopy" and "symplectic", e.g. this one,” arXiv:math/0105080 [math.SG]
  20. N. Halmagyi, “Non-geometric String Backgrounds and Worldsheet Algebras,” JHEP 07 (2008), 137 [arXiv:0805.4571 [hep-th]].
  21. D. Mylonas, P. Schupp and R. J. Szabo, “Membrane Sigma-Models and Quantization of Non-Geometric Flux Backgrounds,” JHEP 09 (2012), 012 [arXiv:1207.0926 [hep-th]].
  22. A. Chatzistavrakidis, L. Jonke and O. Lechtenfeld, “Sigma models for genuinely non-geometric backgrounds,” JHEP 11 (2015), 182 [arXiv:1505.05457 [hep-th]].
  23. T. Bessho, M. A. Heller, N. Ikeda and S. Watamura, “Topological Membranes, Current Algebras and H-flux - R-flux Duality based on Courant Algebroids,” JHEP 04 (2016), 170 [arXiv:1511.03425 [hep-th]].
  24. C. Klimčík and T. Strobl, “WZW - Poisson manifolds,” J. Geom. Phys. 43 (2002), 341–344 [arXiv:math/0104189 [math.SG]].
  25. P. Ševera and A. Weinstein, “Poisson geometry with a 3 form background,” Prog. Theor. Phys. Suppl. 144 (2001), 145–154 [arXiv:math/0107133 [math.SG]].
  26. M. Hansen and T. Strobl, “First Class Constrained Systems and Twisting of Courant Algebroids by a Closed 4-form,” Fundamental Interactions (2009) 115–144 [arXiv:0904.0711 [hep-th]].
  27. I. Vaisman, “Transitive Courant algebroids,” Int. J. Math. Math. Sci. 2005 (2005), 1737–1758 [arXiv:math/0407399 [math.DG]].
  28. M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, “The Geometry of the master equation and topological quantum field theory,” Int. J. Mod. Phys. A 12 (1997), 1405–1429 [arXiv:hep-th/9502010].
  29. A. S. Cattaneo and G. Felder, “A Path integral approach to the Kontsevich quantization formula,” Commun. Math. Phys. 212 (2000), 591–611 [arXiv:math/9902090].
  30. A. S. Cattaneo and G. Felder, “On the AKSZ formulation of the Poisson sigma model,” Lett. Math. Phys. 56 (2001), 163–179 [arXiv:math/0102108 [math]].
  31. N. Ikeda and X. Xu, “Canonical functions, differential graded symplectic pairs in supergeometry, and Alexandrov-Kontsevich-Schwartz-Zaboronsky sigma models with boundaries,” J. Math. Phys. 55 (2014), 113505 [arXiv:1301.4805 [math.SG]].
  32. N. Ikeda and T. Strobl, “BV and BFV for the H-twisted Poisson sigma model,” Annales Henri Poincare 22 (2021) no.4, 1267–1316 [arXiv:1912.13511 [hep-th]].
  33. A. Chatzistavrakidis and L. Jonke, “Basic curvature and the Atiyah cocycle in gauge theory,” [arXiv:2302.04956 [hep-th]].
  34. E. Witten, “Topological Sigma Models,” Commun. Math. Phys. 118 (1988), 411
  35. F. Bonechi, A. S. Cattaneo and R. Iraso, “Comparing Poisson Sigma Model with A-model,” JHEP 10 (2016), 133 [arXiv:1607.03411 [hep-th]].
  36. L. Baulieu, A. S. Losev and N. A. Nekrasov, “Target space symmetries in topological theories. 1.,” JHEP 02 (2002), 021 [arXiv:hep-th/0106042 [hep-th]].
  37. A. S. Cattaneo, G. Felder and L. Tomassini, “From local to global deformation quantization of poisson manifolds,” [arXiv:math/0012228 [math.QA]].
  38. M. Bojowald, A. Kotov and T. Strobl, “Lie algebroid morphisms, Poisson sigma models, and off-shell closed gauge symmetries,” J. Geom. Phys. 54 (2005), 400–426 [arXiv:math/0406445 [math.DG]].
  39. A. Chatzistavrakidis, N. Ikeda and L. Jonke, “Geometric BV for twisted Courant sigma models and the BRST power finesse,” [arXiv:2401.00425 [hep-th]].
  40. Th. Voronov, “L-infinity bialgebroids and homotopy Poisson structures on supermanifolds,” arXiv:1909.04914 [math.DG]
  41. C.A. Abad and M. Crainic, “Representations up to homotopy of Lie algebroids,” J. Reine Angew. Math. 663 (2012), 91–126
  42. N. Ikeda, “Two-dimensional gravity and nonlinear gauge theory,” Annals Phys. 235 (1994), 435–464 [arXiv:hep-th/9312059.
  43. A. Yu. Vaintrob, “Lie algebroids and homological vector fields,” Russ. Math. Surv. 52, 428 (1997)
  44. D. Roytenberg, “On the structure of graded symplectic supermanifolds and Courant algebroids,” Quantization, Poisson Brackets and Beyond, Theodore Voronov (ed.), Contemp. Math. 315, Amer. Math. Soc., Providence, RI, 2002, [arXiv:math/0203110 [math.SG]].
  45. Z. Liu, A. Weinstein and P. Xu, “Manin Triples for Lie Bialgebroids,” J. Diff. Geom. 45 (1997) no.3, 547–574 [arXiv:dg-ga/9508013 [math.DG]].
  46. C. Arias, N. Boulanger, P. Sundell and A. Torres-Gomez, “2D sigma models and differential Poisson algebras,” JHEP 08 (2015), 095 [arXiv:1503.05625 [hep-th]].
  47. C. Arias, P. Sundell and A. Torres-Gomez, “Differential Poisson Sigma Models with Extended Supersymmetry,” [arXiv:1607.00727 [hep-th]].
  48. E. Witten, “Nonabelian Bosonization in Two-Dimensions,” Commun. Math. Phys. 92 (1984), 455–472
  49. M. Grützmann and T. Strobl, “General Yang–Mills type gauge theories for p𝑝pitalic_p-form gauge fields: From physics-based ideas to a mathematical framework or From Bianchi identities to twisted Courant algebroids,” Int. J. Geom. Meth. Mod. Phys. 12 (2014), 1550009 [arXiv:1407.6759 [hep-th]].
  50. A. Chatzistavrakidis, N. Ikeda and G. Šimunić, “The BV action of 3D twisted R-Poisson sigma models,” JHEP 10 (2022), 002 [arXiv:2206.03683 [hep-th]].
  51. D. Roytenberg, “Courant algebroids, derived brackets and even symplectic supermanifolds,” PhD Thesis, arXiv:math/9910078
  52. I. Vaisman, “Lectures on the Geometry of Poisson Manifolds,” Progress in Mathematics, vol. 118, Birkhäuser, Basel and Boston, 1994, doi:10.1007/978-3-0348-8495-2
  53. Th. Voronov, “Higher derived brackets and homotopy algebras,” Journal of Pure and Applied Algebra 202, Issues 1-3 (2005) 133–153
  54. A. S. Cattaneo and G. Felder, “Relative formality theorem and quantisation of coisotropic submanifolds,” [arXiv:math/0501540 [math.QA]].
  55. R. Ibáñez, M. de León, J. C. Marrero, D. M. de Diego, “Dynamics of generalized Poisson and Nambu–Poisson brackets,” J. Math. Phys. 38, 2332–2344 (1997)
  56. B. Jurčo, P. Schupp and J. Vysoký, “p-Brane Actions and Higher Roytenberg Brackets,” JHEP 02 (2013), 042 [arXiv:1211.0814 [hep-th]].
  57. K. C. H. Mackenzie, P. Xu, “Lie bialgebroids and Poisson groupoids,” Duke Math. J. 73(2): 415–452 (1994).
  58. K. C. H. Mackenzie, “General Theory of Lie Groupoids and Lie Algebroids,” Cambridge University Press 2005.
  59. N. Ikeda, “Compatible E-differential forms on Lie algebroids over (pre-)multisymplectic manifolds,” SIGMA 20 (2024), 025, 19 pp. [arXiv:2302.08193 [math.DG]].
  60. Y. Sheng, C. Zhu, “Higher Extensions of Lie Algebroids,” Commun. Contemp. Math. 19, 1650034 (2017) [arXiv:1103.5920 [math-ph]]
  61. G. Bonavolontá, N. Poncin, “On the category of Lie n-algebroids,” J. Geom. Physics 73 (2013) 70–90
  62. C. Laurent-Gengoux, S. Lavau and T. Strobl, “The Universal Lie ∞\infty∞-Algebroid of a Singular Foliation,” Documenta Mathematica 25 (2020) 1571–1652
  63. H.-C. Herbig, D. Herden, C. Seaton, “Higher Koszul brackets on the cotangent complex,” Intern. Math. Res. Notices 2023, Issue 13 (2023) 11592–11644 [arXiv:2107.04204]
  64. Y. Kosmann-Schwarzbach, F. Magri, “Poisson-Nijenhuis structures,” Annales de l’I.H.P. Physique théorique 53 (1990) no. 1, 35–81
  65. W. M. Tulczyjew, “The Legendre transformation,” Annales de l’institut Henri Poincaré. Section A, Physique Théorique 27 (1977) no. 1, 101–114.
  66. H. Yoshimura, J. E. Marsden, “Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems,” J. Geom. Phys. 57:1 (2006) 133–156
  67. A. J. Bruce and J. Grabowski, “Pre-Courant algebroids,” J. Geom. Phys. 142 (2019) 254–273
  68. M. Jotz Lean, R. A. Mehta, T. Papantonis, “Modules and representations up to homotopy of Lie n𝑛nitalic_n-algebroids,” J. Homotopy Relat. Struct. 18 (2023) 23–-70 [arXiv:2001.01101]
  69. M. Crainic and R.  L. Fernandes, “Secondary Characteristic Classes of Lie Algebroids,” In: Carow-Watamura, U., Maeda, Y., Watamura, S. (eds) Quantum Field Theory and Noncommutative Geometry. Lecture Notes in Physics 662. Springer, Berlin, Heidelberg. doi:19.1007/113427869
  70. A. Kotov and T. Strobl, “Lie algebroids, gauge theories, and compatible geometrical structures,” Rev. Math. Phys. 31 (2018) no.04, 1950015 [arXiv:1603.04490 [math.DG]].
  71. R. Caseiro, C. Laurent-Gengoux, “Modular class of Lie-∞\infty∞-algebroids and adjoint representations,” J. Geom. Mech. 14(2), 273–305 (2022)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com