Engineering Edge Orientation Algorithms (2404.13997v1)
Abstract: Given an undirected graph G, the edge orientation problem asks for assigning a direction to each edge to convert G into a directed graph. The aim is to minimize the maximum out degree of a vertex in the resulting directed graph. This problem, which is solvable in polynomial time, arises in many applications. An ongoing challenge in edge orientation algorithms is their scalability, particularly in handling large-scale networks with millions or billions of edges efficiently. We propose a novel algorithmic framework based on finding and manipulating simple paths to face this challenge. Our framework is based on an existing algorithm and allows many algorithmic choices. By carefully exploring these choices and engineering the underlying algorithms, we obtain an implementation which is more efficient and scalable than the current state-of-the-art. Our experiments demonstrate significant performance improvements compared to state-of-the-art solvers. On average our algorithm is 6.59 times faster when compared to the state-of-the-art.
- Optimal graph orientation with storage applications. Universität Graz/Technische Universität Graz. SFB F003-Optimierung und Kontrolle, 1995.
- Graph orientation algorithms to minimize the maximum outdegree. Int. J. Found. Comput. Sci., 18(2):197–215, 2007. 10.1142/S0129054107004644. URL https://doi.org/10.1142/S0129054107004644.
- Benchmarking for graph clustering and partitioning. In Encyclopedia of Social Network Analysis and Mining, pages 73–82. Springer, 2014. 10.1007/978-1-4939-7131-2_23. URL https://doi.org/10.1007/978-1-4939-7131-2_23.
- The GAP benchmark suite. CoRR, abs/1508.03619, 2015. URL http://arxiv.org/abs/1508.03619.
- Genbank. Nucleic Acids Research, 24(1):1–5, 1996.
- M. Blumenstock. Fast algorithms for pseudoarboricity. In M. T. Goodrich and M. Mitzenmacher, editors, Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2016, Arlington, Virginia, USA, January 10, 2016, pages 113–126. SIAM, 2016. 10.1137/1.9781611974317.10. URL https://doi.org/10.1137/1.9781611974317.10.
- P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In Proc. of the 13th Int. World Wide Web Conference (WWW 2004), pages 595–601, Manhattan, USA, 2004. ACM Press.
- Layered label propagation: A multiresolution coordinate-free ordering for compressing social networks. In S. Srinivasan, K. Ramamritham, A. Kumar, M. P. Ravindra, E. Bertino, and R. Kumar, editors, Proc. of the 20th international conference on World Wide Web, pages 587–596. ACM Press, 2011.
- An algebraic sparsified nested dissection algorithm using low-rank approximations. SIAM Journal on Matrix Analysis and Applications, 41(2):715–746, 2020. 10.1137/19M123806X. URL https://doi.org/10.1137/19M123806X.
- M. Charikar. Greedy approximation algorithms for finding dense components in a graph. In K. Jansen and S. Khuller, editors, Approximation Algorithms for Combinatorial Optimization, Third International Workshop, APPROX 2000, Saarbrücken, Germany, September 5-8, 2000, Proceedings, volume 1913 of Lecture Notes in Computer Science, pages 84–95. Springer, 2000. 10.1007/3-540-44436-X_10. URL https://doi.org/10.1007/3-540-44436-X_10.
- Traffic data repository at the {{\{{WIDE}}\}} project. In 2000 USENIX Annual Technical Conference (USENIX ATC 00), 2000.
- Introduction to Algorithms. The MIT Press, Cambridge, MA, 3rd edition, 2009.
- T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Trans. Math. Softw., 38(1), dec 2011. ISSN 0098-3500. 10.1145/2049662.2049663. URL https://doi.org/10.1145/2049662.2049663.
- Benchmarking optimization software with performance profiles. Mathematical Programming, 91(2):201–213, 2002. 10.1007/s101070100263. URL https://doi.org/10.1007/s101070100263.
- I. S. Duff. On algorithms for obtaining a maximum transversal. ACM Trans. Math. Softw., 7(3):315–330, 1981. 10.1145/355958.355963. URL https://doi.org/10.1145/355958.355963.
- Design, implementation, and analysis of maximum transversal algorithms. ACM Transactions on Mathematical Software, 38:13:1–13:31, 2011.
- S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM J. Comput., 4(4):507–518, 1975. 10.1137/0204043. URL https://doi.org/10.1137/0204043.
- H. N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In D. S. Johnson, R. Fagin, M. L. Fredman, D. Harel, R. M. Karp, N. A. Lynch, C. H. Papadimitriou, R. L. Rivest, W. L. Ruzzo, and J. I. Seiferas, editors, Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages 448–456. ACM, 1983. 10.1145/800061.808776. URL https://doi.org/10.1145/800061.808776.
- G. F. Georgakopoulos and K. Politopoulos. MAX-DENSITY revisited: a generalization and a more efficient algorithm. Comput. J., 50(3):348–356, 2007. 10.1093/COMJNL/BXL082. URL https://doi.org/10.1093/comjnl/bxl082.
- A. V. Goldberg. Finding a maximum density subgraph. 1984. URL https://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-171.pdf.
- A new approach to the maximum-flow problem. Journal of the ACM (JACM), 35(4):921–940, 1988.
- An n5/2superscript𝑛52n^{5/2}italic_n start_POSTSUPERSCRIPT 5 / 2 end_POSTSUPERSCRIPT algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.
- On the multiple label placement problem. In Proceedings of the 10th Canadian Conference on Computational Geometry, McGill University, Montréal, Québec, Canada, August 10-12, 1998, 1998. URL http://cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-kakoulis-multiple.ps.gz.
- Ł. Kowalik. Approximation scheme for lowest outdegree orientation and graph density measures. In T. Asano, editor, Algorithms and Computation, 17th International Symposium, ISAAC 2006, Kolkata, India, December 18-20, 2006, Proceedings, volume 4288 of Lecture Notes in Computer Science, pages 557–566. Springer, 2006. 10.1007/11940128_56. URL https://doi.org/10.1007/11940128_56.
- J. Leskovec. Stanford Network Analysis Package (SNAP). http://snap.stanford.edu/index.html, June 2014.
- J. Picard and M. Queyranne. A network flow solution to some nonlinear 0-1 programming problems, with applications to graph theory. Networks, 12(2):141–159, 1982. 10.1002/NET.3230120206. URL https://doi.org/10.1002/net.3230120206.
- A. Pothen and C.-J. Fan. Computing the block triangular form of a sparse matrix. ACM Transactions on Mathematical Software, 16(4):303–324, December 1990.
- AGATHA: automatic graph mining and transformer based hypothesis generation approach. In M. d’Aquin, S. Dietze, C. Hauff, E. Curry, and P. Cudré-Mauroux, editors, CIKM ’20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, October 19-23, 2020, pages 2757–2764. ACM, 2020. 10.1145/3340531.3412684. URL https://doi.org/10.1145/3340531.3412684.
- V. Venkateswaran. Minimizing maximum indegree. Discret. Appl. Math., 143(1-3):374–378, 2004. 10.1016/J.DAM.2003.07.007. URL https://doi.org/10.1016/j.dam.2003.07.007.
- W. Whiteley. The union of matroids and the rigidity of frameworks. SIAM Journal on Discrete Mathematics, 1(2):237–255, 1988. 10.1137/0401025. URL https://doi.org/10.1137/0401025.