Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Radiance Field in Autonomous Driving: A Survey (2404.13816v2)

Published 22 Apr 2024 in cs.CV

Abstract: Neural Radiance Field (NeRF) has garnered significant attention from both academia and industry due to its intrinsic advantages, particularly its implicit representation and novel view synthesis capabilities. With the rapid advancements in deep learning, a multitude of methods have emerged to explore the potential applications of NeRF in the domain of Autonomous Driving (AD). However, a conspicuous void is apparent within the current literature. To bridge this gap, this paper conducts a comprehensive survey of NeRF's applications in the context of AD. Our survey is structured to categorize NeRF's applications in Autonomous Driving (AD), specifically encompassing perception, 3D reconstruction, simultaneous localization and mapping (SLAM), and simulation. We delve into in-depth analysis and summarize the findings for each application category, and conclude by providing insights and discussions on future directions in this field. We hope this paper serves as a comprehensive reference for researchers in this domain. To the best of our knowledge, this is the first survey specifically focused on the applications of NeRF in the Autonomous Driving domain.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (110)
  1. B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” 2020.
  2. J. T. Kajiya and B. P. Von Herzen, “Ray tracing volume densities,” ACM SIGGRAPH computer graphics, vol. 18, no. 3, pp. 165–174, 1984.
  3. H. Abu Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and C. Rother, “Augmented reality meets computer vision: Efficient data generation for urban driving scenes,” International Journal of Computer Vision, vol. 126, pp. 961–972, 2018.
  4. Y. Cabon, N. Murray, and M. Humenberger, “Virtual kitti 2,” arXiv preprint arXiv:2001.10773, 2020.
  5. A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for multi-object tracking analysis,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4340–4349.
  6. S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data: Ground truth from computer games,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14.   Springer, 2016, pp. 102–118.
  7. W. Tong, J. Xie, T. Li, H. Deng, X. Geng, R. Zhou, D. Yang, B. Dai, L. Lu, and H. Li, “3d data augmentation for driving scenes on camera,” arXiv preprint arXiv:2303.10340, 2023.
  8. L. Li, Q. Lian, L. Wang, N. Ma, and Y.-C. Chen, “Lift3d: Synthesize 3d training data by lifting 2d gan to 3d generative radiance field,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 332–341.
  9. L. Li, Q. Lian, and Y.-C. Chen, “Adv3d: Generating 3d adversarial examples in driving scenarios with nerf,” arXiv preprint arXiv:2309.01351, 2023.
  10. F. Wimbauer, N. Yang, C. Rupprecht, and D. Cremers, “Behind the scenes: Density fields for single view reconstruction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 9076–9086.
  11. A. Hayler, F. Wimbauer, D. Muhle, C. Rupprecht, and D. Cremers, “S4c: Self-supervised semantic scene completion with neural fields,” arXiv preprint arXiv:2310.07522, 2023.
  12. W. Gan, N. Mo, H. Xu, and N. Yokoya, “A simple attempt for 3d occupancy estimation in autonomous driving,” arXiv preprint arXiv:2303.10076, 2023.
  13. M. Pan, L. Liu, J. Liu, P. Huang, L. Wang, S. Zhang, S. Xu, Z. Lai, and K. Yang, “Uniocc: Unifying vision-centric 3d occupancy prediction with geometric and semantic rendering,” arXiv preprint arXiv:2306.09117, 2023.
  14. M. Pan, J. Liu, R. Zhang, P. Huang, X. Li, L. Liu, and S. Zhang, “Renderocc: Vision-centric 3d occupancy prediction with 2d rendering supervision,” arXiv preprint arXiv:2309.09502, 2023.
  15. J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang, and D. Cai, “Mononerd: Nerf-like representations for monocular 3d object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 6814–6824.
  16. Z. Xie, Z. Pang, and Y.-X. Wang, “Mv-map: Offboard hd-map generation with multi-view consistency,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 8658–8668.
  17. H. Yang, H. Wang, D. Dai, and L. Wang, “Pred: Pre-training via semantic rendering on lidar point clouds,” arXiv preprint arXiv:2311.04501, 2023.
  18. H. Yang, S. Zhang, D. Huang, X. Wu, H. Zhu, T. He, S. Tang, H. Zhao, Q. Qiu, B. Lin et al., “Unipad: A universal pre-training paradigm for autonomous driving,” arXiv preprint arXiv:2310.08370, 2023.
  19. K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable vision learners,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 16 000–16 009.
  20. J. Ost, F. Mannan, N. Thuerey, J. Knodt, and F. Heide, “Neural scene graphs for dynamic scenes,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 2856–2865.
  21. M. Tancik, V. Casser, X. Yan, S. Pradhan, B. Mildenhall, P. P. Srinivasan, J. T. Barron, and H. Kretzschmar, “Block-nerf: Scalable large scene neural view synthesis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 8248–8258.
  22. H. Turki, J. Y. Zhang, F. Ferroni, and D. Ramanan, “Suds: Scalable urban dynamic scenes,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 12 375–12 385.
  23. J. Yang, B. Ivanovic, O. Litany, X. Weng, S. W. Kim, B. Li, T. Che, D. Xu, S. Fidler, M. Pavone et al., “Emernerf: Emergent spatial-temporal scene decomposition via self-supervision,” arXiv preprint arXiv:2311.02077, 2023.
  24. Y. Chen, C. Gu, J. Jiang, X. Zhu, and L. Zhang, “Periodic vibration gaussian: Dynamic urban scene reconstruction and real-time rendering,” arXiv preprint arXiv:2311.18561, 2023.
  25. X. Zhou, Z. Lin, X. Shan, Y. Wang, D. Sun, and M.-H. Yang, “Drivinggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving scenes,” arXiv preprint arXiv:2312.07920, 2023.
  26. J. Guo, N. Deng, X. Li, Y. Bai, B. Shi, C. Wang, C. Ding, D. Wang, and Y. Li, “Streetsurf: Extending multi-view implicit surface reconstruction to street views,” arXiv preprint arXiv:2306.04988, 2023.
  27. Z. Wang, T. Shen, J. Gao, S. Huang, J. Munkberg, J. Hasselgren, Z. Gojcic, W. Chen, and S. Fidler, “Neural fields meet explicit geometric representations for inverse rendering of urban scenes,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8370–8380.
  28. F. Lu, Y. Xu, G. Chen, H. Li, K.-Y. Lin, and C. Jiang, “Urban radiance field representation with deformable neural mesh primitives,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 465–476.
  29. Z.-H. Lin, B. Liu, Y.-T. Chen, D. Forsyth, J.-B. Huang, A. Bhattad, and S. Wang, “Urbanir: Large-scale urban scene inverse rendering from a single video,” arXiv preprint arXiv:2306.09349, 2023.
  30. A. Pun, G. Sun, J. Wang, Y. Chen, Z. Yang, S. Manivasagam, W.-C. Ma, and R. Urtasun, “Neural lighting simulation for urban scenes,” in Thirty-seventh Conference on Neural Information Processing Systems, 2023. [Online]. Available: https://openreview.net/forum?id=mcx8IGneYw
  31. A. Majercik, C. Crassin, P. Shirley, and M. McGuire, “A ray-box intersection algorithm and efficient dynamic voxel rendering,” Journal of Computer Graphics Techniques Vol, vol. 7, no. 3, pp. 66–81, 2018.
  32. R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Dosovitskiy, and D. Duckworth, “Nerf in the wild: Neural radiance fields for unconstrained photo collections,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 7210–7219.
  33. J. Ost, I. Laradji, A. Newell, Y. Bahat, and F. Heide, “Neural point light fields,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 18 419–18 429.
  34. Z. Li, L. Li, and J. Zhu, “Read: Large-scale neural scene rendering for autonomous driving,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 2, 2023, pp. 1522–1529.
  35. Z. Li, C. Wu, L. Zhang, and J. Zhu, “Dgnr: Density-guided neural point rendering of large driving scenes,” arXiv preprint arXiv:2311.16664, 2023.
  36. C. Wu, J. Sun, Z. Shen, and L. Zhang, “Mapnerf: Incorporating map priors into neural radiance fields for driving view simulation,” arXiv preprint arXiv:2307.14981, 2023.
  37. M. Chang, A. Sharma, M. Kaess, and S. Lucey, “Neural radiance field with lidar maps,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 17 914–17 923.
  38. M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby et al., “Dinov2: Learning robust visual features without supervision,” arXiv preprint arXiv:2304.07193, 2023.
  39. K. Cheng, X. Long, W. Yin, J. Wang, Z. Wu, Y. Ma, K. Wang, X. Chen, and X. Chen, “Uc-nerf: Neural radiance field for under-calibrated multi-view cameras in autonomous driving,” arXiv preprint arXiv:2311.16945, 2023.
  40. J. Li, Z. Feng, Q. She, H. Ding, C. Wang, and G. H. Lee, “Mine: Towards continuous depth mpi with nerf for novel view synthesis,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 12 578–12 588.
  41. Y. Yan, H. Lin, C. Zhou, W. Wang, H. Sun, K. Zhan, X. Lang, X. Zhou, and S. Peng, “Street gaussians for modeling dynamic urban scenes,” arXiv preprint arXiv:2401.01339, 2024.
  42. B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d gaussian splatting for real-time radiance field rendering,” ACM Transactions on Graphics, vol. 42, no. 4, 2023.
  43. L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y. Lin, “inerf: Inverting neural radiance fields for pose estimation,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 1323–1330.
  44. M. Adamkiewicz, T. Chen, A. Caccavale, R. Gardner, P. Culbertson, J. Bohg, and M. Schwager, “Vision-only robot navigation in a neural radiance world,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4606–4613, 2022.
  45. D. Maggio, M. Abate, J. Shi, C. Mario, and L. Carlone, “Loc-nerf: Monte carlo localization using neural radiance fields,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 4018–4025.
  46. S. Katragadda, W. Lee, Y. Peng, P. Geneva, C. Chen, C. Guo, M. Li, and G. Huang, “Nerf-vins: A real-time neural radiance field map-based visual-inertial navigation system,” arXiv preprint arXiv:2309.09295, 2023.
  47. H. Kuang, X. Chen, T. Guadagnino, N. Zimmerman, J. Behley, and C. Stachniss, “Ir-mcl: Implicit representation-based online global localization,” IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1627–1634, 2023.
  48. A. Moreau, N. Piasco, D. Tsishkou, B. Stanciulescu, and A. de La Fortelle, “Lens: Localization enhanced by nerf synthesis,” in Conference on Robot Learning.   PMLR, 2022, pp. 1347–1356.
  49. Y. Hou, T. Shen, T.-Y. Yang, D. DeTone, H. J. Kim, C. Sweeney, and R. Newcombe, “Implicit map augmentation for relocalization,” in European Conference on Computer Vision.   Springer, 2022, pp. 621–638.
  50. J. Liu, Q. Nie, Y. Liu, and C. Wang, “Nerf-loc: Visual localization with conditional neural radiance field,” arXiv preprint arXiv:2304.07979, 2023.
  51. G. Avraham, J. Straub, T. Shen, T.-Y. Yang, H. Germain, C. Sweeney, V. Balntas, D. Novotny, D. DeTone, and R. Newcombe, “Nerfels: renderable neural codes for improved camera pose estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5061–5070.
  52. E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap: Implicit mapping and positioning in real-time,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 6229–6238.
  53. H. Matsuki, E. Sucar, T. Laidow, K. Wada, R. Scona, and A. J. Davison, “imode: Real-time incremental monocular dense mapping using neural field,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 4171–4177.
  54. M. Li, J. He, Y. Wang, and H. Wang, “End-to-end rgb-d slam with multi-mlps dense neural implicit representations,” IEEE Robotics and Automation Letters, 2023.
  55. T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives with a multiresolution hash encoding,” ACM Transactions on Graphics, vol. 41, no. 4, p. 1–15, Jul. 2022. [Online]. Available: http://dx.doi.org/10.1145/3528223.3530127
  56. C.-M. Chung, Y.-C. Tseng, Y.-C. Hsu, X.-Q. Shi, Y.-H. Hua, J.-F. Yeh, W.-C. Chen, Y.-T. Chen, and W. H. Hsu, “Orbeez-slam: A real-time monocular visual slam with orb features and nerf-realized mapping,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 9400–9406.
  57. Y. Mao, X. Yu, K. Wang, Y. Wang, R. Xiong, and Y. Liao, “Ngel-slam: Neural implicit representation-based global consistent low-latency slam system,” arXiv preprint arXiv:2311.09525, 2023.
  58. R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras,” IEEE transactions on robotics, vol. 33, no. 5, pp. 1255–1262, 2017.
  59. Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and M. Pollefeys, “Nice-slam: Neural implicit scalable encoding for slam,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12 786–12 796.
  60. X. Yang, H. Li, H. Zhai, Y. Ming, Y. Liu, and G. Zhang, “Vox-fusion: Dense tracking and mapping with voxel-based neural implicit representation,” in 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).   IEEE, 2022, pp. 499–507.
  61. H. Wang, J. Wang, and L. Agapito, “Co-slam: Joint coordinate and sparse parametric encodings for neural real-time slam,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 13 293–13 302.
  62. M. M. Johari, C. Carta, and F. Fleuret, “Eslam: Efficient dense slam system based on hybrid representation of signed distance fields,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 17 408–17 419.
  63. Y. Tang, J. Zhang, Z. Yu, H. Wang, and K. Xu, “Mips-fusion: Multi-implicit-submaps for scalable and robust online neural rgb-d reconstruction,” arXiv preprint arXiv:2308.08741, 2023.
  64. S. Zhu, G. Wang, H. Blum, J. Liu, L. Song, M. Pollefeys, and H. Wang, “Sni-slam: Semantic neural implicit slam,” arXiv preprint arXiv:2311.11016, 2023.
  65. H. Matsuki, K. Tateno, M. Niemeyer, and F. Tombari, “Newton: Neural view-centric mapping for on-the-fly large-scale slam,” arXiv preprint arXiv:2303.13654, 2023.
  66. Y. Haghighi, S. Kumar, J. P. Thiran, and L. Van Gool, “Neural implicit dense semantic slam,” arXiv preprint arXiv:2304.14560, 2023.
  67. B. Xiang, Y. Sun, Z. Xie, X. Yang, and Y. Wang, “Nisb-map: Scalable mapping with neural implicit spatial block,” IEEE Robotics and Automation Letters, 2023.
  68. S. Liu and J. Zhu, “Efficient map fusion for multiple implicit slam agents,” IEEE Transactions on Intelligent Vehicles, 2023.
  69. T. Deng, G. Shen, T. Qin, J. Wang, W. Zhao, J. Wang, D. Wang, and W. Chen, “Plgslam: Progressive neural scene represenation with local to global bundle adjustment,” arXiv preprint arXiv:2312.09866, 2023.
  70. A. Rosinol, J. J. Leonard, and L. Carlone, “Nerf-slam: Real-time dense monocular slam with neural radiance fields,” arXiv preprint arXiv:2210.13641, 2022.
  71. Y. Zhang, F. Tosi, S. Mattoccia, and M. Poggi, “Go-slam: Global optimization for consistent 3d instant reconstruction,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 3727–3737.
  72. T. Hua, H. Bai, Z. Cao, and L. Wang, “Fmapping: Factorized efficient neural field mapping for real-time dense rgb slam,” arXiv preprint arXiv:2306.00579, 2023.
  73. W. Zhang, T. Sun, S. Wang, Q. Cheng, and N. Haala, “Hi-slam: Monocular real-time dense mapping with hybrid implicit fields,” arXiv preprint arXiv:2310.04787, 2023.
  74. H. Li, X. Gu, W. Yuan, L. Yang, Z. Dong, and P. Tan, “Dense rgb slam with neural implicit maps,” arXiv preprint arXiv:2301.08930, 2023.
  75. Z. Zhu, S. Peng, V. Larsson, Z. Cui, M. R. Oswald, A. Geiger, and M. Pollefeys, “Nicer-slam: Neural implicit scene encoding for rgb slam,” arXiv preprint arXiv:2302.03594, 2023.
  76. E. Sandström, K. Ta, L. Van Gool, and M. R. Oswald, “Uncle-slam: Uncertainty learning for dense neural slam,” arXiv preprint arXiv:2306.11048, 2023.
  77. J. Deng, Q. Wu, X. Chen, S. Xia, Z. Sun, G. Liu, W. Yu, and L. Pei, “Nerf-loam: Neural implicit representation for large-scale incremental lidar odometry and mapping,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 8218–8227.
  78. S. Isaacson, P.-C. Kung, M. Ramanagopal, R. Vasudevan, and K. A. Skinner, “Loner: Lidar only neural representations for real-time slam,” IEEE Robotics and Automation Letters, 2023.
  79. X. Liu, Y. Li, Y. Teng, H. Bao, G. Zhang, Y. Zhang, and Z. Cui, “Multi-modal neural radiance field for monocular dense slam with a light-weight tof sensor,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 1–11.
  80. A. L. Teigen, Y. Park, A. Stahl, and R. Mester, “Rgb-d mapping and tracking in a plenoxel radiance field,” arXiv preprint arXiv:2307.03404, 2023.
  81. S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa, “Plenoxels: Radiance fields without neural networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5501–5510.
  82. H. Wang, Y. Cao, X. Wei, Y. Shou, L. Shen, Z. Xu, and K. Ren, “Structerf-slam: Neural implicit representation slam for structural environments,” Computers & Graphics, p. 103893, 2024.
  83. E. Sandström, Y. Li, L. Van Gool, and M. R. Oswald, “Point-slam: Dense neural point cloud-based slam,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 18 433–18 444.
  84. J. Hu, M. Mao, H. Bao, G. Zhang, and Z. Cui, “Cp-slam: Collaborative neural point-based slam system,” arXiv preprint arXiv:2311.08013, 2023.
  85. L. Liso, E. Sandström, V. Yugay, L. Van Gool, and M. R. Oswald, “Loopy-slam: Dense neural slam with loop closures,” arXiv preprint arXiv:2402.09944, 2024.
  86. Y. Pan, X. Zhong, L. Wiesmann, T. Posewsky, J. Behley, and C. Stachniss, “Pin-slam: Lidar slam using a point-based implicit neural representation for achieving global map consistency,” arXiv preprint arXiv:2401.09101, 2024.
  87. C. Yan, D. Qu, D. Wang, D. Xu, Z. Wang, B. Zhao, and X. Li, “Gs-slam: Dense visual slam with 3d gaussian splatting,” arXiv preprint arXiv:2311.11700, 2023.
  88. H. Matsuki, R. Murai, P. H. Kelly, and A. J. Davison, “Gaussian splatting slam,” arXiv preprint arXiv:2312.06741, 2023.
  89. V. Yugay, Y. Li, T. Gevers, and M. R. Oswald, “Gaussian-slam: Photo-realistic dense slam with gaussian splatting,” arXiv preprint arXiv:2312.10070, 2023.
  90. N. Keetha, J. Karhade, K. M. Jatavallabhula, G. Yang, S. Scherer, D. Ramanan, and J. Luiten, “Splatam: Splat, track & map 3d gaussians for dense rgb-d slam,” arXiv preprint arXiv:2312.02126, 2023.
  91. S. Zhu, R. Qin, G. Wang, J. Liu, and H. Wang, “Semgauss-slam: Dense semantic gaussian splatting slam,” arXiv preprint arXiv:2403.07494, 2024.
  92. M. Li, S. Liu, and H. Zhou, “Sgs-slam: Semantic gaussian splatting for neural dense slam,” arXiv preprint arXiv:2402.03246, 2024.
  93. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open urban driving simulator,” 2017.
  94. S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical simulation for autonomous vehicles,” 2017.
  95. Y. Chen, F. Rong, S. Duggal, S. Wang, X. Yan, S. Manivasagam, S. Xue, E. Yumer, and R. Urtasun, “Geosim: Realistic video simulation via geometry-aware composition for self-driving,” 2021.
  96. Z. Yang, Y. Chen, J. Wang, S. Manivasagam, W.-C. Ma, A. J. Yang, and R. Urtasun, “Unisim: A neural closed-loop sensor simulator,” in CVPR, 2023.
  97. D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” 2016.
  98. Z. Wu, T. Liu, L. Luo, Z. Zhong, J. Chen, H. Xiao, C. Hou, H. Lou, Y. Chen, R. Yang, Y. Huang, X. Ye, Z. Yan, Y. Shi, Y. Liao, and H. Zhao, “Mars: An instance-aware, modular and realistic simulator for autonomous driving,” CICAI, 2023.
  99. A. Tonderski, C. Lindström, G. Hess, W. Ljungbergh, L. Svensson, and C. Petersson, “Neurad: Neural rendering for autonomous driving,” 2023.
  100. X. Zhou, Z. Lin, X. Shan, Y. Wang, D. Sun, and M.-H. Yang, “Drivinggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving scenes,” 2024.
  101. H. Wu, C. Wen, W. Li, X. Li, R. Yang, and C. Wang, “Transformation-equivariant 3d object detection for autonomous driving,” 2022.
  102. H. Zhou, J. Shao, L. Xu, D. Bai, W. Qiu, B. Liu, Y. Wang, A. Geiger, and Y. Liao, “Hugs: Holistic urban 3d scene understanding via gaussian splatting,” 2024.
  103. J. Zhang, F. Zhang, S. Kuang, and L. Zhang, “Nerf-lidar: Generating realistic lidar point clouds with neural radiance fields,” 2023.
  104. T. Tao, L. Gao, G. Wang, Y. Lao, P. Chen, Z. hengshuang, D. Hao, X. Liang, M. Salzmann, and K. Yu, “Lidar-nerf: Novel lidar view synthesis via neural radiance fields,” arXiv preprint arXiv:2304.10406, 2023.
  105. S. Huang, Z. Gojcic, Z. Wang, F. Williams, Y. Kasten, S. Fidler, K. Schindler, and O. Litany, “Neural lidar fields for novel view synthesis,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 18 236–18 246.
  106. Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao, and J. Dai, “Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers,” in European conference on computer vision.   Springer, 2022, pp. 1–18.
  107. X. Lin, T. Lin, Z. Pei, L. Huang, and Z. Su, “Sparse4d: Multi-view 3d object detection with sparse spatial-temporal fusion,” arXiv preprint arXiv:2211.10581, 2022.
  108. ——, “Sparse4d v2: Recurrent temporal fusion with sparse model,” arXiv preprint arXiv:2305.14018, 2023.
  109. X. Lin, Z. Pei, T. Lin, L. Huang, and Z. Su, “Sparse4d v3: Advancing end-to-end 3d detection and tracking,” arXiv preprint arXiv:2311.11722, 2023.
  110. X. Zhang, S. Bi, K. Sunkavalli, H. Su, and Z. Xu, “NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com