Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chemical interactions in active droplets (2404.13740v2)

Published 21 Apr 2024 in cond-mat.soft

Abstract: Interactions among biologically active agents is facilitated by their self-generated chemical and hydrodynamic fields. In order to elucidate the pair-wise interactions between such micro-organisms, we employ active droplets as a model system, capable of self-generating chemical and hydrodynamic fields. We demonstrate that the solute P\'eclet number ($Pe$), characterizing the relative strength of its convective to diffusive transport, plays a crucial role in determining how the chemical and hydrodynamic fields impact their interactions. Our findings reveal that at low $Pe$, the interaction is predominantly governed by chemo-repulsive effects, leading to droplets avoiding physical contact. Conversely, at elevated $Pe$, hydrodynamic interactions become more influential, leading to physical engagement. However, irrespective of $Pe$, the interaction of a droplet with the chemical trail of another droplet is always governed by chemo-repulsive effects. Furthermore, our results establish that the chemo-repulsive deflection/rebounding of droplets is influenced by the droplets' inherent chemical polarity, as determined by its $Pe$, independent of their approach orientation. Our findings offer a methodology for tuning the outcomes of binary interactions among chemically active droplets, laying the groundwork for potential studies on their collective dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. J. L. Anderson, Annual review of fluid mechanics 21, 61 (1989).
  2. R. Golestanian, T. B. Liverpool, and A. Ajdari, Physical review letters 94, 220801 (2005).
  3. H.-R. Jiang, N. Yoshinaga, and M. Sano, Physical review letters 105, 268302 (2010).
  4. P. Dwivedi, D. Pillai, and R. Mangal, Current Opinion in Colloid & Interface Science , 101614 (2022).
  5. S. Michelin, Annual Review of Fluid Mechanics 55, 77 (2023).
  6. S. Birrer, S. I. Cheon, and L. D. Zarzar, Current Opinion in Colloid & Interface Science 61, 101623 (2022).
  7. M. Morozov and S. Michelin, The Journal of chemical physics 150, 044110 (2019).
  8. C. Jin, C. Krüger, and C. C. Maass, Proceedings of the National Academy of Sciences 114, 5089 (2017).
  9. C. D. Nadell, J. B. Xavier, and K. R. Foster, FEMS microbiology reviews 33, 206 (2008).
  10. S. Thutupalli, R. Seemann, and S. Herminghaus, New Journal of Physics 13, 073021 (2011).
  11. P. T. Underhill, J. P. Hernandez-Ortiz, and M. D. Graham, Physical review letters 100, 248101 (2008).
  12. K. Lippera, M. Benzaquen, and S. Michelin, Soft Matter 17, 365 (2021).
  13. W. Thielicke and R. Sonntag, Journal of Open Research Software 9 (2021).
  14. T. Ishikawa, M. Simmonds, and T. J. Pedley, Journal of Fluid Mechanics 568, 119 (2006).
  15. A. Zöttl and H. Stark, Physical review letters 112, 118101 (2014).
  16. M. Morozov, Soft Matter 16, 5624 (2020).
  17. I. O. Götze and G. Gompper, Physical Review E 82, 041921 (2010).
  18. G. Guan, J. Lin, and D. Nie, Entropy 24, 1564 (2022).
  19. Z. Ouyang, J. Lin, and X. Ku, International Journal of Non-Linear Mechanics 108, 72 (2019).
  20. A. Kanevsky, M. J. Shelley, and A.-K. Tornberg, Journal of Computational Physics 229, 958 (2010).
  21. S. Saha, R. Golestanian, and S. Ramaswamy, Physical Review E 89, 062316 (2014).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com