Strong Existence and Uniqueness for Singular SDEs Driven by Stable Processes (2404.13729v1)
Abstract: We consider the one-dimensional stochastic differential equation \begin{equation*} X_t = x_0 + L_t + \int_0t \mu(X_s)ds, \quad t \geq 0, \end{equation*} where $\mu$ is a finite measure of Kato class $K_{\eta}$ with $\eta \in (0,\alpha-1]$ and $(L_t){t \geq 0}$ is a symmetric $\alpha$-stable process with $\alpha \in (1,2)$. We derive weak and strong well posedness for this equation when $\eta \leq\alpha-1$ and $\eta < \alpha-1$, respectively, and show that the condition $\eta \leq \alpha-1$ is sharp for weak existence. We furthermore reformulate the equation in terms of the local time of the solution $(X{t})_{t \geq 0}$ and prove its well posedness. To this end, we also derive a Tanaka-type formula for a symmetric, $\alpha$-stable processes with $\alpha \in (1,2)$ that is perturbed by an adapted, right-continuous process of finite variation.
- Function spaces and potential theory, volume 314 of Grundlehren Math. Wiss. Berlin: Springer-Verlag, 1995.
- M. Ainsworth and C. Glusa. Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains. In Contemporary computational mathematics – a celebration of the 80th birthday of Ian Sloan. In 2 volumes, pages 17–57. Cham: Springer, 2018.
- S. Albeverio and Z. Ma. Additive functionals, nowhere Radon and Kato class smooth measures associated with Dirichlet forms. Osaka J. Math., 29(2):247–265, 1992.
- D. Applebaum. Lévy processes and stochastic calculus., volume 116 of Camb. Stud. Adv. Math. Cambridge: Cambridge University Press, 2nd ed. edition, 2009.
- Strong existence and uniqueness for stable stochastic differential equations with distributional drift. Ann. Probab., 48(1):178–210, 2020.
- Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren Math. Wiss. Berlin: Heidelberg, 2011.
- Stochastic differential equations for Dirichlet processes. Probab. Theory Relat. Fields, 121(3):422–446, 2001.
- Brownian motion with singular drift. Ann. Probab., 31(2):791–817, 2003.
- One-dimensional stochastic differential equations with singular and degenerate coefficients. Sankhyā, 67(1):19–45, 2005.
- J. Bertoin. Lévy processes, volume 121 of Camb. Tracts Math. Cambridge: Cambridge Univ. Press, 1996.
- S. Blei and H.-J. Engelbert. One-dimensional stochastic differential equations with generalized and singular drift. Stochastic Processes Appl., 123(12):4337–4372, 2013.
- S. Blei and H.-J. Engelbert. One-dimensional stochastic differential equations with generalized drift. Theory of Probability & Its Applications, 58(3):345–357, 2014.
- Markov processes and potential theory. Pure and Applied Mathematics, 29. A Series of Monographs and Textbooks. New York-London: Academic Press. X, 313 p. 140 s. (1968)., 1968.
- K. Bogdan and T. Jakubowski. Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Commun. Math. Phys., 271(1):179–198, 2007.
- E. Boylan. Local times for a class of Markoff processes. Ill. J. Math., 8:19–39, 1964.
- Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation. The Annals of Probability, 40(6):2483 – 2538, 2012.
- Z.-Q. Chen and L. Wang. Uniqueness of stable processes with drift. Proc. Am. Math. Soc., 144(6):2661–2675, 2016.
- P.-É. C. De Raynal and S. Menozzi. On multidimensional stable-driven stochastic differential equations with Besov drift. Electron. J. Probab., 27:52, 2022. Id/No 163.
- The Tanaka formula for symmetric stable processes with index α𝛼\alphaitalic_α, 0<α<20𝛼20<\alpha<20 < italic_α < 2. Theory Probab. Appl., 64(2):264–289, 2019.
- H. J. Engelbert and W. Schmidt. On one-dimensional stochastic differential equations with generalized drift. Stochastic differential systems, Proc. IFIP-WG 7/1 Work. Conf., Marseille-Luminy/France 1984, Lect. Notes Control Inf. Sci. 69, 143-155 (1985)., 1985.
- P. Étoré and M. Martinez. Time inhomogeneous stochastic differential equations involving the local time of the unknown process, and associated parabolic operators. Stochastic Processes Appl., 128(8):2642–2687, 2018.
- J. Groh. On Brownian motion with irregular drift. Ill. J. Math., 30:417–428, 1986.
- I. Gyöngy and T. Martínez. On stochastic differential equations with locally unbounded drift. Czech. Math. J., 51(4):763–783, 2001.
- P. Kim and R. Song. Two-sided estimates on the density of Brownian motion with singular drift. Ill. J. Math., 50(1-4):635–688, 2006.
- P. Kim and R. Song. Stable process with singular drift. Stochastic Processes Appl., 124(7):2479–2516, 2014.
- V. Knopova and A. Kulik. Intrinsic compound kernel estimates for the transition probability density of Lévy-type processes and their applications. Probab. Math. Stat., 37(1):53–100, 2017.
- H. Kremp and N. Perkowski. Multidimensional SDE with distributional drift and Lévy noise. Bernoulli, 28(3):1757–1783, 2022.
- H. K. Kremp. Topics in particle systems and singular SDEs. Dissertation, Freie Universität Berlin, 2022. http://dx.doi.org/10.17169/refubium-38665.
- N. V. Krylov and M. Röckner. Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Relat. Fields, 131(2):154–196, 2005.
- T. G. Kurtz. Equivalence of stochastic equations and martingale problems. In Stochastic analysis 2010. Selected papers based on the presentations at the 7th congress of the International Society for Analysis, its Applications and Computations, London, GB, July 2009, pages 113–130. Berlin: Springer, 2011.
- T. G. Kurtz. Weak and strong solutions of general stochastic models. Electron. Commun. Probab., 19:16, 2014. Id/No 58.
- A. E. Kyprianou. Fluctuations of Lévy processes with applications. Introductory lectures. Universitext. Berlin: Springer, 2nd ed. edition, 2014.
- J. F. Le Gall. One-dimensional stochastic differential equations involving the local times of the unknown process. Stochastic analysis and applications, Proc. int. Conf., Swansea 1983, Lect. Notes Math. 1095, 51-82 (1984)., 1984.
- E. Priola. Pathwise uniqueness for singular SDEs driven by stable processes. Osaka J. Math., 49(2):421–447, 2012.
- P. E. Protter. Stochastic integration and differential equations, volume 21 of Appl. Math. (N. Y.). Berlin: Springer, 2nd ed. edition, 2004.
- P. Salminen and M. Yor. Tanaka formula for symmetric Lévy processes. In Séminaire de Probabilités XL, pages 265–285. Berlin: Springer, 2007.
- E. M. Stein. Singular integrals and differentiability properties of functions, volume 30 of Princeton Math. Ser. Princeton University Press, Princeton, NJ, 1970.
- D. W. Stroock and M. Yor. Some remarkable martingales. Seminaire de probabilites XV, Univ. Strasbourg 1979/80, Lect. Notes Math. 850, 590-603 (1981)., 1981.
- Perturbation of drift-type for Levy processes. J. Math. Kyoto Univ., 14:73–92, 1974.
- H. Triebel. Characterizations of Besov-Hardy-Sobolev spaces: A unified approach. J. Approx. Theory, 52(2):162–203, 1988.
- H. Triebel. Theory of function spaces. Mod. Birkhäuser Classics. Basel: Birkhäuser, reprint of the 1983 original edition, 2010.
- H. Tsukada. A potential theoretic approach to Tanaka formula for asymmetric Lévy processes. In Séminaire de probabilités XLIX, pages 521–542. Cham: Springer, 2018.
- H. Tsukada. Tanaka formula for strictly stable processes. Probab. Math. Stat., 39(1):39–60, 2019.
- A. Y. Veretennikov. On strong solutions and explicit formulas for solutions of stochastic integral equations. Math. USSR, Sb., 39:387–403, 1981.
- W. A. Woyczyński. Lévy processes in the physical sciences. In Lévy processes. Theory and applications, pages 241–266. Boston: Birkhäuser, 2001.
- Unique strong solutions of Lévy processes driven stochastic differential equations with discontinuous coefficients. Stochastics, 91(4):592–612, 2019.
- A. K. Zvonkin. A transformation of the phase space of a diffusion process that removes the drift. Math. USSR, Sb., 22:129–149, 1975.