Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sup-norm bounds for Jacobi cusp forms (2404.13625v3)

Published 21 Apr 2024 in math.NT

Abstract: In this article, we give $L{\infty}$-norm bounds for the natural invariant norm of cusp forms of real weight $k$ and character $\chi$ for any cofinite Fuchsian subgroup $\Gamma\subset\mathrm{SL}{2}(\mathbb{R})$. Using the representation of Jacobi cusp forms of integral weight $k$ and index $m$ for the modular group $\Gamma{0}=\mathrm{SL}{2}(\mathbb{Z})$ as linear combinations of modular forms of weight $k-\frac{1}{2}$ for some congruence subgroup of $\Gamma{0}$ (depending on $m$) and suitable Jacobi theta functions, we derive $L{\infty}$-norm bounds for the natural invariant norm of these Jacobi cusp forms. More specifically, letting $J_{k,m}{\mathrm{cusp}}(\Gamma_{0})$ denote the complex vector space of Jacobi cusp forms under consideration and $\Vert\cdot\Vert_{\mathrm{Pet}}$ the pointwise Petersson norm on $J_{k,m}{\mathrm{cusp}}(\Gamma_ {0})$, we prove that for $k\in\mathbb{Z}{\ge 5}$ and $m\in\mathbb{Z}{\ge 1}$, and a given $\epsilon>0$, the $L{\infty}$-norm bound \begin{align*} \Vert\phi\Vert_{L{\infty}}=\sup_{(\tau,z)\in\mathbb{H}\times\mathbb{C}}\Vert\phi(\tau,z)\Vert_{\mathrm{Pet}}=O_{\Gamma_{0},\epsilon}\big(k\,m{\frac {7}{4}+\epsilon}\big) \end{align*} holds for any $\phi\in J_{k,m}{\mathrm{cusp}}(\Gamma_{0})$, which is $L{2}$-normalized with respect to the Petersson inner product, where the implied constant depends on $\Gamma_{0}$ and the choice of $\epsilon>0$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. P. Anamby and S. Das, Jacobi forms, Saito-Kurokawa lifts, their pullbacks and sup-norms on average, Res. Math. Sci. 10, 14 (2023).
  2. A. Aryasomayajula and P. Majumder, Off-diagonal estimates of the Bergman kernel on hyperbolic Riemann surfaces of finite volume, Proc. Amer. Math. Soc. 146 (2018), 4009–4020.
  3. A. Aryasomayajula and P. Majumder, Off-diagonal estimates of the Bergman kernel on hyperbolic Riemann surfaces of finite volume-II, Ann. Fac. Sci. Toulouse Math. 29 (2020), 795–804.
  4. V. Blomer and R. Holowinsky, Bounding sup-norms of cusp forms of large level, Invent. Math. 179 (2010), 645–681.
  5. T. Bouche, Asymptotic results for hermitian line bundles over complex manifolds: The heat kernel approach, In: Higher-dimensional complex varieties, 67–81, de Gruyter, Berlin, 1996.
  6. M. Eichler and D. Zagier, The theory of Jacobi cusp forms, Progress in Math. 55, Birkhäuser, 1985.
  7. Uniform sup-norm bounds on average for cusp forms of higher weights, Arbeitstagung Bonn 2013, 127–154, Progr. Math. 319, Birkhäuser/Springer, Cham, 2016.
  8. Effective sup-norm bounds on average for cusp forms of even weight, Trans. Amer. Math. Soc. 372 (2019), 7735–7766.
  9. J. Jorgenson and R. Lundelius, Convergence of the heat kernel and the resolvent kernel on degenerating hyperbolic Riemann surfaces of finite volume, Quaestiones Math. 18 (1995), 345–363.
  10. W. Kohnen, Estimates for Fourier coefficients of Siegel cusp forms of degree two, Compositio Math. 87 (1993), 231–240.
  11. J. Kramer, A geometrical approach to the theory of Jacobi cusp forms, Compositio Math. 79 (1991), 1–19.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com