Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Non-Adaptive Tolerant Junta Testing via Local Estimators (2404.13502v1)

Published 21 Apr 2024 in cs.DS

Abstract: We give a non-adaptive algorithm that makes $2{\tilde{O}(\sqrt{k\log(1/\varepsilon_2 - \varepsilon_1)})}$ queries to a Boolean function $f:{\pm 1}n \rightarrow {\pm 1}$ and distinguishes between $f$ being $\varepsilon_1$-close to some $k$-junta versus $\varepsilon_2$-far from every $k$-junta. At the heart of our algorithm is a local mean estimation procedure for Boolean functions that may be of independent interest. We complement our upper bound with a matching lower bound, improving a recent lower bound obtained by Chen et al. We thus obtain the first tight bounds for a natural property of Boolean functions in the tolerant testing model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Robert B Ash. Information theory. Courier Corporation, 2012.
  2. Tolerant junta testing and the connection to submodular optimization and function isomorphism. Technical Report https://arxiv.org/pdf/1607.03938.pdf, ArXiV, 2016. To appear in SODA 2018.
  3. Tolerant junta testing and the connection to submodular optimization and function isomorphism. ACM Trans. Comput. Theory, 11(4):24:1–24:33, 2019.
  4. Free bits, pcps and non-approximability-towards tight results. SIAM J. Comput., 27(3):804–915, 1998.
  5. Eric Blais. Testing juntas nearly optimally. In Proc. 41st Annual ACM Symposium on Theory of Computing (STOC), pages 151–158, 2009.
  6. Avrim Blum. Relevant examples and relevant features: Thoughts from computational learning theory. In AAAI Fall Symposium on Relevance, volume 5, page 1, 1994.
  7. Nader H. Bshouty. Almost optimal distribution-free junta testing. In Amir Shpilka, editor, 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 2:1–2:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
  8. Mildly exponential lower bounds on tolerant testers for monotonicity, unateness, and juntas. arXiv preprint arXiv:2309.12513, 2023. To appear in SODA (2024).
  9. Junto-symmetric functions, hypergraph isomorphism and crunching. In 2012 IEEE 27th Conference on Computational Complexity, pages 148–158. IEEE, 2012.
  10. H. Chockler and D. Gutfreund. A lower bound for testing juntas. Information Processing Letters, 90(6):301–305, 2004.
  11. Xi Chen and Shyamal Patel. New lower bounds for adaptive tolerant junta testing. FOCS, 2023. to appear.
  12. Settling the query complexity of non-adaptive junta testing. Journal of the ACM (JACM), 65(6):1–18, 2018.
  13. Junta correlation is testable. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1549–1563. IEEE Computer Society, 2019.
  14. Testing juntas. In Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science, pages 103–112, 2002.
  15. Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
  16. J. Håstad. A slight sharpening of LMN. Journal of Computer and System Sciences, 63(3):498–508, 2001.
  17. Junta distance approximation with sub-exponential queries. In Valentine Kabanets, editor, 36th Computational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200 of LIPIcs, pages 24:1–24:38. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
  18. S. Jukna. Extremal combinatorics with applications in computer science. Springer, 2001.
  19. S. Jukna. Boolean Function Complexity: Advances and Frontiers:. Springer, 2012.
  20. Inclusion-exclusion: Exact and approximate. Combinatorica, 16:465–477, 1996.
  21. Donald E Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1. Addison-Wesley Professional, 1997.
  22. N. Linial and N. Nisan. Approximate inclusion-exclusion. Combinatorica, 10(4):349–365, 1990.
  23. A. Levi and E. Waingarten. Tolerant Junta Testing Requires Ω~⁢(k2)~Ωsuperscript𝑘2\tilde{\Omega}(k^{2})over~ start_ARG roman_Ω end_ARG ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) Non-adaptive Queries. Manuscript, 2018.
  24. Learning juntas. Proceedings of the Thirty-Fifth Annual Symposium on Theory of Computing, 2003.
  25. R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
  26. Tolerant property testing and distance approximation. Journal of Computer and System Sciences, 72(6):1012–1042, 2006.
  27. Proclaiming dictators and juntas or testing boolean formulae. In International Workshop on Randomization and Approximation Techniques in Computer Science, pages 273–285. Springer, 2001.
  28. Approximating the distance to monotonicity of boolean functions. Random Struct. Algorithms, 60(2):233–260, 2022.
  29. Numerical mathematics, volume 37. Springer Science & Business Media, 2006.
  30. Mert Sağlam. Near log-convexity of measured heat in (discrete) time and consequences. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 967–978. IEEE, 2018.
  31. Rocco A Servedio. Testing by implicit learning: A brief survey. Property testing: current research and surveys, pages 197–210, 2010.
  32. Adaptivity helps for testing juntas. In 30th Conference on Computational Complexity (CCC 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.
  33. A. Yao. Lower bounds to randomized algorithms for graph properties. In Proc. 28th Annual Symposium on Foundations of Computer Science (FOCS), pages 393–400, 1987.
Citations (2)

Summary

We haven't generated a summary for this paper yet.