2000 character limit reached
Legendrian Lavrentiev links (2404.13473v2)
Published 20 Apr 2024 in math.SG and math.GT
Abstract: Lavrentiev curves form a special class of rectifiable curves which includes cusp-free piecewise smooth curves. We call a Lavrentiev curve Legendrian if the integral of the contact form equals zero on any its subarc. We define Legendrian isotopies of such curves and prove that the equivalence classes of Legendrian Lavrentiev links with respect to Legendrian isotopies coincide with smooth classes.
- R. Bing. The Geometric Topology of 3-Manifolds, American Mathematical Society (1983).
- G. Dimitroglou Rizell, M. G. Sullivan. C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT-limits of Legendrians and positive loops. Preprint. arXiv:2212.09190.
- I. Dynnikov, M. Prasolov. An algorithm for comparing Legendrian knots. Preprint. arXiv:2309.05087.
- H. Geiges. An Introduction to Contact Topology, Cambridge University Press (2008).
- K. Honda. On the classification of tight contact structures I. Geometry & Topology 4 (2000), 309–368.
- P. Tukia. The planar Schönflies theorem for Lipschitz maps. Ann. Acad. Sei. Fenn. Ser. AI Math. 5 (1980), 49–72.
- P. Tukia. Extension of quasisymmetric and Lipschitz embeddings of the real line into the plane. Ann. Acad. Sci. Fenn. Ser. AI Math. 6 (1981), 89–94.