Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Legendrian Lavrentiev links (2404.13473v2)

Published 20 Apr 2024 in math.SG and math.GT

Abstract: Lavrentiev curves form a special class of rectifiable curves which includes cusp-free piecewise smooth curves. We call a Lavrentiev curve Legendrian if the integral of the contact form equals zero on any its subarc. We define Legendrian isotopies of such curves and prove that the equivalence classes of Legendrian Lavrentiev links with respect to Legendrian isotopies coincide with smooth classes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (7)
  1. R. Bing. The Geometric Topology of 3-Manifolds, American Mathematical Society (1983).
  2. G. Dimitroglou Rizell, M. G. Sullivan. C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT-limits of Legendrians and positive loops. Preprint. arXiv:2212.09190.
  3. I. Dynnikov, M. Prasolov. An algorithm for comparing Legendrian knots. Preprint. arXiv:2309.05087.
  4. H. Geiges. An Introduction to Contact Topology, Cambridge University Press (2008).
  5. K. Honda. On the classification of tight contact structures I. Geometry & Topology 4 (2000), 309–368.
  6. P. Tukia. The planar Schönflies theorem for Lipschitz maps. Ann. Acad. Sei. Fenn. Ser. AI Math. 5 (1980), 49–72.
  7. P. Tukia. Extension of quasisymmetric and Lipschitz embeddings of the real line into the plane. Ann. Acad. Sci. Fenn. Ser. AI Math. 6 (1981), 89–94.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com