Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonexistence of Time-periodic Solutions of the Dirac Equation in Kerr-Newman-(A)dS Spacetime (2404.13255v1)

Published 20 Apr 2024 in gr-qc, math-ph, and math.MP

Abstract: In this paper, we study the nonexistence of nontrivial time-periodic solutions of the Dirac equation in Kerr-Newman-(A)dS spacetime. In the non-extreme Kerr-Newman-dS spacetime, we prove that there is no nontrivial $Lp$ integrable Dirac particle for arbitrary $(\lambda,p)\in \mathbb{R}\times[2,+\infty)$. In the extreme Kerr-Newman-dS and extreme Kerr-Newman-AdS spacetime, we show the equation relations between the energy eigenvalue $\omega$, the horizon radius, the angular momentum, the electric charge and the cosmological constant if there exists nontrivial $Lp$ integrable time-periodic solution of the Dirac equation, and further give the necessary conditions for the existence of nontrivial solutions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. S Akcay and R A. Matzner. The Kerr-de Sitter universe. Classical and Quantum Gravity, 28:085012, 2011.
  2. Fourier analysis and nonlinear partial differential equations. Springer Berlin, Heidelberg, 2011.
  3. F Belgiorno and S L. Cacciatori. The absence of normalizable time-periodic solutions for the Dirac equation in the Kerr-Newman-dS black hole background. Journal of Physics A: Mathematical and Theoretical, 42(13):135207, 2009.
  4. F Belgiorno and S L. Cacciatori. The Dirac equation in Kerr-Newman-AdS black hole background. Journal of Mathematical Physics, 51:033517, 2010.
  5. K Bichteler. Global existence of spin structures for gravitational fields. Journal of Mathematical Physics, 9:813–815, 1968.
  6. Introduction to holographic superconductor models. Science China Physics, Mechanics & Astronomy, 58:1–46, 2015.
  7. S Chandrasekhar. The solution of Dirac’s equation in Kerr geometry. Proceedings of Royal Society of London Series A-Mathematical and Physics Sciences, 349:571–575, 1976.
  8. S Chandrasekhar. The Mathematical theory of black hole: Revised reprint of the 1983 original. The Clarendon Press, Oxford University Press, New York, 1992.
  9. E de Faria and W de Melo. Mathematical aspects of quantum field theory. Cambridge University Press, 2010.
  10. Non-existence of time-periodic solutions of the Dirac equation in a Reissner-Nordström black hole background. Journal of Mathematical Physics, 41(4):2173–2194, 2000.
  11. Non-existence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry. Communications on Pure and Applied Mathematics, 53:902–929, 2000.
  12. T Frankel. The geometry of physics: An introduction. Cambridge University Press, 2012.
  13. B C. Hall. Quantum theory for mathematicians. Springer New York, 2013.
  14. S Hassani. Mathematical physics: A Modern introduction to its foundations. Springer Cham, 2013.
  15. S Helgason. Differential geometry and symmetric spaces. Academic Press, New York, 1962.
  16. O Hijazi. Spectral properties of the Dirac operator and geometrical structures. World Scientific, Colombia, 2001.
  17. N Kamran and R. G. McLenaghan. Separation of variables and symmetry operators for the neutrino and Dirac equations in the space-times admitting a two-parameter abelian orthogonally transitive isometry group and a pair of shearfree geodesic null congruences. Journal of Mathematical Physics, 25(4):1019–1027, 1984.
  18. S Kobayashi and K Nomizu. Foundations of differential geometry, Volume 1. Interscience, New York, 1963.
  19. Spin geometry. Princeton University Press, Princeton, NJ, 1989.
  20. C.B. Liang and B. Zhou. Differential geometry and general relativity, Volume 1. Springer Singapore, 2023.
  21. J Natário. An introduction to mathematical relativity. Springer Cham, 2021.
  22. B O’Neill. The geometry of Kerr black holes. A K Peters, Ltd, Wellesley, MA, 1995.
  23. D Page. Dirac equation around a charged, rotating black hole. Physical Review D, 14(6):1509–1510, 1976.
  24. H Schmid. Bound state solutions of the Dirac equation in the extreme Kerr geometry. Mathematische Nachrichten, 274-275:117–129, 2004.
  25. G Teschl. Ordinary differential equations and dynamic systems. American Mathematical Society, Rhode Island, 2012.
  26. W Tu. Differential geometry: Connections, curvature, and characteristic class. Springer Cham, 2017.
  27. R M. Wald. General relativity. The University of Chicago Press, Chicago, 1984.
  28. W Walter. Ordinary differential equations. Springer New York, New York, 1998.
  29. Y H. Wang and X Zhang. Nonexistence of time-periodic solutions of the Dirac equation in non-extreme Kerr-Newman-AdS spacetime. Science China Mathematics, 61(1):73–82, 2018.
  30. S Weinberg. Gravitation and cosmology: Principles and applications of the general theory of relativity. Wiley, New York, 1972.
  31. X Zhang. A new quasi-local mass and positivity. Acta Mathematica Sinica, English Series, 24:881–890, 2008.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com