Quantum Advantage and CSP Complexity (2404.13186v1)
Abstract: Information-processing tasks modelled by homomorphisms between relational structures can witness quantum advantage when entanglement is used as a computational resource. We prove that the occurrence of quantum advantage is determined by the same type of algebraic structure (known as a minion) that captures the polymorphism identities of CSPs and, thus, CSP complexity. We investigate the connection between the minion of quantum advantage and other known minions controlling CSP tractability and width. In this way, we make use of complexity results from the algebraic theory of CSPs to characterise the occurrence of quantum advantage in the case of graphs, and to obtain new necessary and sufficient conditions in the case of arbitrary relational structures.
- Minimum quantum resources for strong non-locality. In Mark M. Wilde, editor, 12th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2017, June 14-16, 2017, Paris, France, volume 73 of LIPIcs, pages 9:1–9:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.TQC.2017.9.
- The quantum monad on relational structures. In 42nd International Symposium on Mathematical Foundations of Computer Science, volume 83 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 35, 19. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017.
- Promise constraint satisfaction and width. In Proc. 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA’22), pages 1129–1153, 2022. arXiv:2107.05886, doi:10.1137/1.9781611977073.48.
- Generalized satisfiability problems via operator assignments. J. Comput. Syst. Sci., 105:171–198, 2019. doi:10.1016/J.JCSS.2019.05.003.
- Proof complexity meets algebra. ACM Trans. Comput. Log., 20(1):1:1–1:46, 2019. doi:10.1145/3265985.
- (2+ϵitalic-ϵ\epsilonitalic_ϵ)-SAT is NP-hard. SIAM J. Comput., 46(5):1554–1573, 2017. doi:10.1137/15M1006507.
- A quantum protocol to win the graph colouring game on all Hadamard graphs. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 89-A(5):1378–1381, 2006. doi:10.1093/IETFEC/E89-A.5.1378.
- Algebraic approach to promise constraint satisfaction. J. ACM, 68(4):28:1–28:66, 2021. arXiv:1811.00970, doi:10.1145/3457606.
- Constraint satisfaction problems solvable by local consistency methods. J. ACM, 61(1), 2014. Article No. 3. doi:10.1145/2556646.
- Robustly solvable constraint satisfaction problems. SIAM J. Comput., 45(4):1646–1669, 2016. arXiv:1512.01157, doi:10.1137/130915479.
- The wonderland of reflections. Isr. J. Math, 223(1):363–398, Feb 2018. arXiv:1510.04521, doi:10.1007/s11856-017-1621-9.
- Theoretical analysis of singleton arc consistency and its extensions. Artif. Intell., 172(1):29–41, 2008. doi:10.1016/j.artint.2007.09.001.
- New hardness results for graph and hypergraph colorings. In Proc. 31st Conference on Computational Complexity (CCC’16), volume 50 of LIPIcs, pages 14:1–14:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.14.
- Promise constraint satisfaction: Algebraic structure and a symmetric Boolean dichotomy. SIAM J. Comput., 50(6):1663–1700, 2021. arXiv:1704.01937, doi:10.1137/19M128212X.
- SDPs and robust satisfiability of promise CSP. In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC’23), pages 609–622. ACM, 2023. arXiv:2211.08373, doi:10.1145/3564246.3585180.
- The power of the combined basic LP and affine relaxation for promise CSPs. SIAM J. Comput., 49:1232–1248, 2020. arXiv:1907.04383, doi:10.1137/20M1312745.
- Cost of exactly simulating quantum entanglement with classical communication. Physical Review Letters, 83(9):1874, 1999.
- Minimum entangled state dimension required for pseudo-telepathy. Quantum Inf. Comput., 5(4):275–284, 2005. doi:10.26421/QIC5.45-2.
- Quantum vs. classical communication and computation. In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 63–68. ACM, 1998. doi:10.1145/276698.276713.
- Andrei A. Bulatov. H-coloring dichotomy revisited. Theor. Comput. Sci., 349(1):31–39, 2005. URL: https://doi.org/10.1016/j.tcs.2005.09.028, doi:10.1016/J.TCS.2005.09.028.
- Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS’17), pages 319–330, 2017. arXiv:1703.03021, doi:10.1109/FOCS.2017.37.
- Classifying the complexity of constraints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005. doi:10.1137/S0097539700376676.
- On the quantum chromatic number of a graph. Electron. J. Comb., 14(1), 2007. doi:10.37236/999.
- Arc consistency and friends. J. Log. Comput., 23(1):87–108, 2013. doi:10.1093/logcom/exr039.
- Approximate graph colouring and crystals. In Proc. 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA’23), pages 2256–2267, 2023. arXiv:2210.08293, doi:10.1137/1.9781611977554.ch86.
- Approximate graph colouring and the hollow shadow. In Proc. 55th Annual ACM Symposium on Theory of Computing (STOC’23), pages 623–631. ACM, 2023. arXiv:2211.03168, doi:10.1145/3564246.3585112.
- CLAP: A new algorithm for promise CSPs. SIAM Journal on Computing, 52(1):1–37, 2023. arXiv:2107.05018, doi:10.1137/22M1476435.
- Hierarchies of minion tests for PCSPs through tensors. In Proc. 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA’23), pages 568–580, 2023. arXiv:2207.02277, doi:10.1137/1.9781611977554.ch25.
- Consequences and limits of nonlocal strategies. In 19th Annual IEEE Conference on Computational Complexity (CCC 2004), 21-24 June 2004, Amherst, MA, USA, pages 236–249. IEEE Computer Society, 2004. doi:10.1109/CCC.2004.1313847.
- Characterization of binary constraint system games. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 320–331. Springer, 2014. doi:10.1007/978-3-662-43948-7_27.
- Constraint satisfaction, bounded treewidth, and finite-variable logics. In Pascal Van Hentenryck, editor, Principles and Practice of Constraint Programming - CP 2002, 8th International Conference, CP 2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings, volume 2470 of Lecture Notes in Computer Science, pages 310–326. Springer, 2002. doi:10.1007/3-540-46135-3_21.
- Local consistency as a reduction between constraint satisfaction problems. 2023. arXiv:2301.05084.
- Some practicable filtering techniques for the constraint satisfaction problem. In Proc. 15th International Joint Conference on Artificial Intelligence (IJCAI’97), pages 412–417. Morgan Kaufmann, 1997.
- The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM J. Comput., 28(1):57–104, 1998. doi:10.1137/S0097539794266766.
- Quantum coloring games via symmetric SAT games. In Asian Conference on Quantum Information Science (AQIS’11), 2011.
- Pseudo-telepathy, entanglement, and graph colorings. In Proceedings IEEE International Symposium on Information Theory, page 101. IEEE, 2002.
- The complexity of near-optimal graph coloring. J. ACM, 23(1):43–49, 1976. doi:10.1145/321921.321926.
- Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, 1979.
- Andrew M Gleason. Measures on the closed subspaces of a Hilbert space. In The Logico-Algebraic Approach to Quantum Mechanics: Volume I: Historical Evolution, pages 123–133. Springer, 1975.
- Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM, 54(1):1:1–1:24, 2007. doi:10.1145/1206035.1206036.
- On the complexity of H-coloring. J. Comb. Theory, Ser. B, 48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.
- Leslie Hogben. Handbook of Linear Algebra. CRC Press, 2013.
- Oracularization and two-prover one-round interactive proofs against nonlocal strategies. 24th Annual IEEE Conference on Computational Complexity, pages 217–228, 2008.
- A multi-prover interactive proof for NEXP sound against entangled provers. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 243–252. IEEE Computer Society, 2012. doi:10.1109/FOCS.2012.11.
- Peter G. Jeavons. On the algebraic structure of combinatorial problems. Theor. Comput. Sci., 200(1-2):185–204, 1998. doi:10.1016/S0304-3975(97)00230-2.
- Closure properties of constraints. J. ACM, 44(4):527–548, 1997. doi:10.1145/263867.263489.
- MIP* = RE. Commun. ACM, 64(11):131–138, 2021. doi:10.1145/3485628.
- Richard M. Karp. Reducibility among combinatorial problems. In Proc. Complexity of Computer Computations, pages 85–103, 1972. doi:10.1007/978-1-4684-2001-2_9.
- Entangled games are hard to approximate. SIAM J. Comput., 40(3):848–877, 2011. doi:10.1137/090751293.
- Marcin Kozik. Solving CSPs using weak local consistency. SIAM J. Comput., 50(4):1263–1286, 2021. arXiv:1605.00565, doi:10.1137/18M117577X.
- Topology and adjunction in promise constraint satisfaction. SIAM J. Comput., 52(1):37–79, 2023. arXiv:2003.11351, doi:10.1137/20M1378223.
- Oddities of quantum colorings. Balt. J. Mod. Comput., 4(4), 2016. doi:10.22364/BJMC.2016.4.4.16.
- Quantum homomorphisms. J. Comb. Theory, Ser. B, 118:228–267, 2016. doi:10.1016/j.jctb.2015.12.009.
- New separations in zero-error channel capacity through projective kochen-specker sets and quantum coloring. IEEE Trans. Inf. Theory, 59(6):4025–4032, 2013. doi:10.1109/TIT.2013.2248031.
- NEEXP is contained in MIP. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 510–518. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00039.
- Nicholas Pippenger. Galois theory for minors of finite functions. Discret. Math., 254(1-3):405–419, 2002. doi:10.1016/S0012-365X(01)00297-7.
- Eduard Prugovecki. Quantum Mechanics in Hilbert Space. Academic Press, 1982.
- Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In Proc. 40th Annual ACM Symposium on Theory of Computing (STOC’08), pages 245–254, 2008. doi:10.1145/1374376.1374414.
- Kochen–Specker sets and the rank-1 quantum chromatic number. IEEE Trans. Inf. Theory, 58(4):2524–2529, 2012. doi:10.1109/TIT.2011.2178018.
- Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020. arXiv:1704.01914, doi:10.1145/3402029.