On the rectilinear crossing number of complete balanced multipartite graphs and layered graphs (2404.13155v2)
Abstract: A rectilinear drawing of a graph is a drawing of the graph in the plane in which the edges are drawn as straight-line segments. The rectilinear crossing number of a graph is the minimum number of pairs of edges that cross over all rectilinear drawings of the graph. Let $n \ge r$ be positive integers. The graph $K_nr$, is the complete $r$-partite graph on $n$ vertices, in which every set of the partition has at least $\lfloor n/r \rfloor$ vertices. The layered graph, $L_nr$, is an $r$-partite graph on $n$ vertices, in which for every $1\le i \le r-1$, all the vertices in the $i$-th partition are adjacent to all the vertices in the $(i+1)$-th partition. In this paper, we give upper bounds on the rectilinear crossing numbers of $K_nr$ and~$L_nr$.
- R. Fabila-Monroy, R. Paul, J. Viafara-Chanchi, and A. Weinberger, “On the rectilinear crossing number of complete balanced multipartite graphs and layered graphs,” in XX Encuentros de Geometrıa Computacional (EGC’23), Santiago de Compostela, Spain, pp. 33–36, 2023.
- M. Schaefer, Crossing numbers of graphs. CRC Press, 2018.
- F. Harary and A. Hill, “On the number of crossings in a complete graph,” Proceedings of the Edinburgh Mathematical Society, vol. 13, no. 4, pp. 333–338, 1963.
- R. K. Guy, “A combinatorial problem,” Nabla (Bulletin of the Malayan Mathematical Society), vol. 7, pp. 68–72, 1960.
- K. Zarankiewicz, “On a problem of P. Turan concerning graphs,” Fund. Math., vol. 41, pp. 137–145, 1954.
- B. M. Ábrego, S. Fernández-Merchant, J. Leaños, and G. Salazar, “A central approach to bound the number of crossings in a generalized configuration,” in The IV Latin-American Algorithms, Graphs, and Optimization Symposium, vol. 30 of Electron. Notes Discrete Math., pp. 273–278, Elsevier Sci. B. V., Amsterdam, 2008.
- O. Aichholzer, F. Duque, R. Fabila Monroy, O. E. García-Quintero, and C. Hidalgo-Toscano, “An ongoing project to improve the rectilinear and the pseudolinear crossing constants.” Preprint.
- H. Harborth, “Über die Kreuzungszahl vollständiger, n-geteilter Graphen,” Mathematische Nachrichten, vol. 48, no. 1-6, pp. 179–188, 1971.
- E. Gethner, L. Hogben, B. Lidickỳ, F. Pfender, A. Ruiz, and M. Young, “On crossing numbers of complete tripartite and balanced complete multipartite graphs,” Journal of Graph Theory, vol. 4, no. 84, pp. 552–565, 2017.
- J. W. Moon, “On the distribution of crossings in random complete graphs,” J. Soc. Indust. Appl. Math., vol. 13, pp. 506–510, 1965.
- O. Aichholzer, F. Aurenhammer, and H. Krasser, “Enumerating order types for small point sets with applications,” Order, vol. 19, no. 3, pp. 265–281, 2002.
- B. M. Ábrego and S. Fernández-Merchant, “Geometric drawings of Knsubscript𝐾𝑛K_{n}italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT with few crossings,” J. Combin. Theory Ser. A, vol. 114, no. 2, pp. 373–379, 2007.
- R. Fabila-Monroy and J. López, “Computational search of small point sets with small rectilinear crossing number,” Journal of Graph Algorithms and Applications, vol. 18, no. 3, pp. 393–399, 2014.
- F. Duque, R. Fabila-Monroy, C. Hernández-Vélez, and C. Hidalgo-Toscano, “Counting the number of crossings in geometric graphs,” Inform. Process. Lett., vol. 165, pp. Paper No. 106028, 5, 2021.