Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduction systems and degree bounds for integration (2404.13042v2)

Published 19 Apr 2024 in cs.SC

Abstract: In symbolic integration, the Risch--Norman algorithm aims to find closed forms of elementary integrals over differential fields by an ansatz for the integral, which usually is based on heuristic degree bounds. Norman presented an approach that avoids degree bounds and only relies on the completion of reduction systems. We give a formalization of his approach and we develop a refined completion process, which terminates in more instances. In some situations when the completion process does not terminate, one can detect patterns allowing to still describe infinite reduction systems that are complete. We present such infinite systems for the fields generated by Airy functions and complete elliptic integrals, respectively. Moreover, we show how complete reduction systems can be used to find rigorous degree bounds. In particular, we give a general formula for weighted degree bounds and we apply it to find tight bounds in the above examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Sergei A. Abramov and Mark van Hoeij. A Method for the Integration of Solutions of Ore Equations. Proc. ISSAC’97, pp. 172–175, 1997.
  2. Stefan T. Boettner. Mixed Transcendental and Algebraic Extensions for the Risch-Norman Algorithm. PhD Thesis, Tulane Univ., New Orleans, USA, 2010.
  3. Manuel Bronstein. Symbolic Integration I – Transcendental Functions. 2nd ed., Springer, 2005.
  4. Manuel Bronstein. pmint – The Poor Man’s Integrator. Version 1.1, 2005. http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/
  5. Manuel Bronstein. Structure theorems for parallel integration. J. Symbolic Computation 42, pp. 757–769, 2007.
  6. James H. Davenport. The Parallel Risch Algorithm (I). Proc. EUROCAM’82, pp. 144–157, 1982.
  7. James H. Davenport. On the Parallel Risch Algorithm (III): Use of tangents. SIGSAM Bull. 16, pp. 3–6, 1982.
  8. James H. Davenport and Barry M. Trager. On the Parallel Risch Algorithm (II). ACM Trans. Mathematical Software 11, pp. 356–362, 1985.
  9. An Additive Decomposition in Logarithmic Towers and Beyond. Proc. ISSAC’20, pp. 146–153, 2020.
  10. Hao Du and Clemens G. Raab. Complete Reduction Systems for Airy Functions. Bull. Chinese Applied Mathematics 1, pp. 10-21, 2023.
  11. John P. Fitch. User-based Integration Software. Proc. SYMSAC’81, pp. 245–248, 1981.
  12. Rüdiger Gebauer and H. Michael Möller. Buchberger’s Algorithm and Staggered Linear Bases. Proc. SYMSAC’86, pp. 218–221, 1986.
  13. Keith O. Geddes and L. Yohanes Stefanus. On the Risch-Norman Integration Method and Its Implementation in MAPLE. Proc. ISSAC’89, pp. 212–217, 1989.
  14. On the construction of staggered linear bases. J. Algebra and Its Applications 20(8), Article 2150132, 2021.
  15. Amir Hashemi and H. Michael Möller. A new algorithm for computing staggered linear bases. J. Symbolic Computation 117, pp.1–14, 2023.
  16. Th. Kötteritzsch. Ueber die Auflösung eines Systems von unendlich vielen linearen Gleichungen. Zeitschrift für Mathematik und Physik 15, pp. 1–15 and 229–268, 1870.
  17. Gröbner Bases Computation Using Syzygies. Proc. ISSAC’92, pp. 320–328, 1992.
  18. Arthur C. Norman. A Critical-Pair/Completion based Integration Algorithm. Proc. ISSAC’90, pp. 201–205, 1990.
  19. Arthur C. Norman and P. M. A. Moore. Implementing the new Risch Integration algorithm. Proc. 4th International Colloquium on Advanced Computing Methods in Theoretical Physics, pp. 99–110, 1977.
  20. Clemens G. Raab. Comments on Risch’s On the Integration of Elementary Functions which are Built Up Using Algebraic Operations. In Integration in Finite Terms: Fundamental Sources, pp. 221–233, Springer, 2022.
  21. Robert H. Risch. The problem of integration in finite terms. Trans. American Mathematical Society 139, pp. 167–189, 1969.
  22. Maxwell Rosenlicht. Liouville’s theorem on functions with elementary integrals. Pacific J. Mathematics 24, pp. 153–161, 1968.
  23. Airy Functions and Applications to Physics. 2nd ed., Imperial College Press, 2010.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com