Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on Combinatorial Invariance of Kazhdan--Lusztig polynomials (2404.12834v3)

Published 19 Apr 2024 in math.CO and math.RT

Abstract: We introduce the concepts of an amazing hypercube decomposition and a double shortcut for it, and use these new ideas to formulate a conjecture implying the Combinatorial Invariance Conjecture of the Kazhdan--Lusztig polynomials for the symmetric group. This conjecture has the advantage of being combinatorial in nature. The appendix by Grant T. Barkley and Christian Gaetz discusses the related notion of double hypercubes and proves an analogous conjecture for these in the case of co-elementary intervals.

Summary

We haven't generated a summary for this paper yet.