Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Federated Analytics: Taxonomy, Enabling Techniques, Applications and Open Issues (2404.12666v2)

Published 19 Apr 2024 in cs.DC, cs.CR, and cs.ET

Abstract: The escalating influx of data generated by networked edge devices, coupled with the growing awareness of data privacy, has restricted the traditional data analytics workflow, where the edge data are gathered by a centralized server to be further utilized by data analysts. To continue leveraging vast edge data to support various data-incentive applications, a transformative shift is promoted in computing paradigms from centralized data processing to privacy-preserved distributed data processing. The need to perform data analytics on private edge data motivates federated analytics (FA), an emerging technique to support collaborative data analytics among diverse data owners without centralizing the raw data. Despite the wide applications of FA in industry and academia, a comprehensive examination of existing research efforts in FA has been notably absent. This survey aims to bridge this gap by first providing an overview of FA, elucidating key concepts, and discussing its relationship with similar concepts. We then conduct a thorough examination of FA, including its key challenges, taxonomy, and enabling techniques. Diverse FA applications, including statistical metrics, frequency-related applications, database query operations, FL-assisting FA tasks, and other wireless network applications are then carefully reviewed. We complete the survey with several open research issues, future directions, and a comprehensive lessons learned part. This survey intends to provide a holistic understanding of the emerging FA techniques and foster the continued evolution of privacy-preserving distributed data processing in the emerging networked society.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (170)
  1. “Number of connected iot devices will surge to 125 billion by 2030.” [Online]. Available: https://sst.semiconductor-digest.com/2017/10/number-of-connected-iot-devices-will-surge-to-125-billion-by-2030/#:~:text=2030
  2. “The growth in connected iot devices is expected to generate 79.4zb of data in 2025, according to a new idc forecast.” [Online]. Available: https://www.businesswire.com/news/home/20190618005012/en/The-Growth-in-Connected-IoT-Devices-is-Expected-to-Generate-79.4ZB-of-Data-in-2025-According-to-a-New-IDC-Forecast
  3. European Parliament and Council of the European Union, “Regulation (EU) 2016/679 of the European Parliament and of the Council.” [Online]. Available: https://data.europa.eu/eli/reg/2016/679/oj
  4. D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V. Poor, “Federated learning for internet of things: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1622–1658, 2021.
  5. W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile edge networks: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.
  6. L. U. Khan, W. Saad, Z. Han, E. Hossain, and C. S. Hong, “Federated learning for internet of things: Recent advances, taxonomy, and open challenges,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1759–1799, 2021.
  7. Federated analytics: Collaborative data science without data collection. Google AI. [Online]. Available: https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html
  8. Z. Wang, Y. Zhu, D. Wang, and Z. Han, “FedACS: Federated skewness analytics in heterogeneous decentralized data environments,” in Proc. IEEE/ACM International Symposium on Quality of Service (IWQoS), 2021.
  9. F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints,” IEEE Transactions on Neural Networks and Learning Systems, 2020.
  10. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Proc. Artificial Intelligence and Statistics (AISTATS), 2017.
  11. D. Froelicher, J. R. Troncoso-Pastoriza, J. L. Raisaro, M. A. Cuendet, J. S. Sousa, H. Cho, B. Berger, J. Fellay, and J.-P. Hubaux, “Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption,” Nature communications, 2021.
  12. E. Bagdasaryan, P. Kairouz, S. Mellem, A. Gascón, K. Bonawitz, D. Estrin, and M. Gruteser, “Towards sparse federated analytics: Location heatmaps under distributed differential privacy with secure aggregation,” 2022.
  13. D. Wang, S. Shi, Y. Zhu, and Z. Han, “Federated analytics: Opportunities and challenges,” IEEE Network, 2022.
  14. A. R. Elkordy, Y. H. Ezzeldin, S. Han, S. Sharma, C. He, S. Mehrotra, S. Avestimehr et al., “Federated analytics: A survey,” APSIPA Transactions on Signal and Information Processing, 2023.
  15. Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Randomized aggregatable privacy-preserving ordinal response,” in Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2014.
  16. Z. Wang, Y. Zhu, D. Wang, and Z. Han, “FedFPM: A unified federated analytics framework for collaborative frequent pattern mining,” in Proc. IEEE Conference on Computer Communications (INFOCOM), 2022.
  17. D. K. Dennis, T. Li, and V. Smith, “Heterogeneity for the win: One-shot federated clustering,” in Proc. International Conference on Machine Learning (ICML), 2021.
  18. W. Zhu, P. Kairouz, B. McMahan, H. Sun, and W. Li, “Federated heavy hitters discovery with differential privacy,” in Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), 2020.
  19. D. Chen, D. Wang, Y. Zhu, and Z. Han, “Digital twin for federated analytics using a bayesian approach,” IEEE Internet of Things Journal, 2021.
  20. A. Davidson, P. Snyder, E. Quirk, J. Genereux, B. Livshits, and H. Haddadi, “STAR: Secret sharing for private threshold aggregation reporting,” in Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2022.
  21. G. Cormode and I. L. Markov, “Bit-efficient numerical aggregation and stronger privacy for trust in federated analytics,” arXiv, 2021.
  22. B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting telemetry data privately,” Advances in Neural Information Processing Systems (NeurIPS), vol. 30, 2017.
  23. T. T. Nguyên, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin, “Collecting and analyzing data from smart device users with local differential privacy,” arXiv, 2016.
  24. Q. Ye, H. Hu, X. Meng, and H. Zheng, “PrivKV: Key-value data collection with local differential privacy,” in Proc. IEEE Symposium on Security and Privacy (SP), 2019.
  25. K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-preserving machine learning,” in Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2017.
  26. J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova, “Secure single-server aggregation with (poly) logarithmic overhead,” in Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2020.
  27. S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran, “Fastsecagg: Scalable secure aggregation for privacy-preserving federated learning,” arXiv, 2020.
  28. J. So, B. Güler, and A. S. Avestimehr, “Turbo-aggregate: Breaking the quadratic aggregation barrier in secure federated learning,” IEEE Journal on Selected Areas in Information Theory, 2021.
  29. E. Roth, D. Noble, B. Hemenway Falk, and A. Haeberlen, “Honeycrisp: Large-scale differentially private aggregation without a trusted core,” in Proc. ACM Symposium on Operating Systems Principles (SOSP), 2019.
  30. G. Aggarwal, N. Mishra, and B. Pinkas, “Secure computation of the median (and other elements of specified ranks),” Journal of Cryptology, 2010.
  31. A. Tueno, F. Kerschbaum, S. Katzenbeisser, Y. Boev, and M. Qureshi, “Secure computation of the kth-ranked element in a star network,” Financial Cryptography and Data Security (FC), 2020.
  32. F. Iutzeler, “Distributed computation of quantiles via ADMM,” IEEE Signal Processing Letters, 2017.
  33. X. Zhou and X. Wang, “Memory and communication efficient federated kernel k𝑘kitalic_k-means,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  34. J. Chung, K. Lee, and K. Ramchandran, “Federated unsupervised clustering with generative models,” in Proc. AAAI International Workshop on Trustable, Verifiable and Auditable Federated Learning, 2022.
  35. E. Lubana, C. I. Tang, F. Kawsar, R. Dick, and A. Mathur, “Orchestra: Unsupervised federated learning via globally consistent clustering,” in Proc. International Conference on Machine Learning (ICML), 2022.
  36. M. Servetnyk, C. C. Fung, and Z. Han, “Unsupervised federated learning for unbalanced data,” in Proc. IEEE Global Communications Conference (GLOBECOM), 2020.
  37. R. Bassily and A. Smith, “Local, private, efficient protocols for succinct histograms,” in Proc. ACM Symposium on Theory of Computing (STOC), 2015.
  38. Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren, “Heavy hitter estimation over set-valued data with local differential privacy,” in Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2016.
  39. J. Acharya, Z. Sun, and H. Zhang, “Hadamard response: Estimating distributions privately, efficiently, and with little communication,” in Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
  40. J. Acharya and Z. Sun, “Communication complexity in locally private distribution estimation and heavy hitters,” in Proc. International Conference on Machine Learning (ICML), 2019.
  41. T. Wang, N. Li, and S. Jha, “Locally differentially private frequent itemset mining,” in Proc. IEEE Symposium on Security and Privacy (SP), 2018.
  42. R. Bassily, K. Nissim, U. Stemmer, and A. Thakurta, “Practical locally private heavy hitters,” Journal of Machine Learning Research, 2020.
  43. G. Cormode and A. Bharadwaj, “Sample-and-threshold differential privacy: Histograms and applications,” in Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.
  44. J. Böhler and F. Kerschbaum, “Secure multi-party computation of differentially private heavy hitters,” in Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2021.
  45. Z. Wang, Y. Zhu, D. Wang, and Z. Han, “Federated analytics-empowered frequent pattern mining for decentralized web 3.0 applications,” in Proc. IEEE Conference on Computer Communications (INFOCOM), 2024.
  46. J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and J. Rogers, “SMCQL: Secure query processing for private data networks,” 2017.
  47. N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and A. Bestavros, “Conclave: secure multi-party computation on big data,” in Proc. European Chapter of ACM Special Interest Group in Operating Systems (EuroSys), 2019.
  48. Y. Wang and K. Yi, “Secure yannakakis: Join-aggregate queries over private data,” in Proc. International Conference on Management of Data (SIGMOD), 2021.
  49. J. Bater, Y. Park, X. He, X. Wang, and J. Rogers, “Saqe: practical privacy-preserving approximate query processing for data federations,” Proc. VLDB Endowment, 2020.
  50. R. Poddar, S. Kalra, A. Yanai, R. Deng, R. A. Popa, and J. M. Hellerstein, “Senate: a maliciously-secure MPC platform for collaborative analytics,” in Proc. USENIX Security Symposium, 2021.
  51. Y. Zhang, Y. Shi, Z. Zhou, C. Xue, Y. Xu, K. Xu, and J. Du, “Efficient and secure skyline queries over vertical data federation,” IEEE Transactions on Knowledge and Data Engineering, 2022.
  52. Y. Tong, X. Pan, Y. Zeng, Y. Shi, C. Xue, Z. Zhou, X. Zhang, L. Chen, Y. Xu, K. Xu et al., “Hu-fu: Efficient and secure spatial queries over data federation,” 2022.
  53. E. Roth, H. Zhang, A. Haeberlen, and B. C. Pierce, “Orchard: Differentially private analytics at scale,” in Proc. USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2020.
  54. E. Roth, K. Newatia, Y. Ma, K. Zhong, S. Angel, and A. Haeberlen, “Mycelium: Large-scale distributed graph queries with differential privacy,” in Proc. ACM Symposium on Operating Systems Principles (SOSP), 2021.
  55. E. Margolin, K. Newatia, T. Luo, E. Roth, and A. Haeberlen, “Arboretum: A planner for large-scale federated analytics with differential privacy,” in Proc. Symposium on Operating Systems Principles (SOSP), 2023.
  56. D. Chai, L. Wang, K. Chen, and Q. Yang, “Secure federated matrix factorization,” IEEE Intelligent Systems, 2022.
  57. Z. Li, B. Ding, C. Zhang, N. Li, and J. Zhou, “Federated matrix factorization with privacy guarantee,” Proc. VLDB Endowment, 2021.
  58. D. Chai, L. Wang, J. Zhang, L. Yang, S. Cai, K. Chen, and Q. Yang, “Practical lossless federated singular vector decomposition over billion-scale data,” in Proc. ACM Conference on Knowledge Discovery and Data Mining (KDD), 2022.
  59. C. Shi and C. Shen, “Federated multi-armed bandits,” in Proc. AAAI Conference on Artificial Intelligence, 2021.
  60. C. Shi, C. Shen, and J. Yang, “Federated multi-armed bandits with personalization,” in Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), 2021.
  61. T. Li, L. Song, and C. Fragouli, “Federated recommendation system via differential privacy,” in Proc. IEEE International Symposium on Information Theory (ISIT), 2020.
  62. Z. Zhu, J. Zhu, J. Liu, and Y. Liu, “Federated bandit: A gossiping approach,” Proc. ACM Conference on on Measurement and Analysis of Computing Systems, 2021.
  63. A. Dubey and A. Pentland, “Differentially-private federated linear bandits,” in Advances in Neural Information Processing Systems (NeurIPS), 2020.
  64. A. C.-C. Yao, “How to generate and exchange secrets,” in Proc. Annual Symposium on Foundations of Computer Science (FOCS), 1986.
  65. J. Wang, S. Guo, X. Xie, and H. Qi, “Protect privacy from gradient leakage attack in federated learning,” in Proc. IEEE Conference on Computer Communications (INFOCOM), 2022.
  66. Z. Yang and K. Järvinen, “The death and rebirth of privacy-preserving wifi fingerprint localization with paillier encryption,” in Proc. IEEE Conference on Computer Communications (INFOCOM), 2022.
  67. T. Zang, C. Zheng, S. Ma, C. Sun, and W. Chen, “A general solution for straggler effect and unreliable communication in federated learning,” in Proc. IEEE International Conference on Communications (ICC), 2023.
  68. K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air computation,” IEEE Transactions on Wireless Communications (TWC), 2020.
  69. J. Mao and A. Yener, “Roar-fed: Ris-assisted over-the-air adaptive resource allocation for federated learning,” in Proc. IEEE International Conference on Communications (ICC), 2023.
  70. K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, H. B. McMahan et al., “Towards federated learning at scale: System design,” in Proc. Machine Learning and Systems (MLSys), 2019.
  71. G. Wang, C. X. Dang, and Z. Zhou, “Measure contribution of participants in federated learning,” in Proc. IEEE International Conference on Big Data (IEEE BigData), 2019.
  72. H. Yu, Z. Liu, Y. Liu, T. Chen, M. Cong, X. Weng, D. Niyato, and Q. Yang, “A fairness-aware incentive scheme for federated learning,” in Proc. AAAI/ACM Conference on AI, Ethics, and Society (AIES), 2020.
  73. J. Weng, J. Weng, H. Huang, C. Cai, and C. Wang, “Fedserving: A federated prediction serving framework based on incentive mechanism,” in Proc. IEEE Conference on Computer Communications (INFOCOM), 2021.
  74. R. Zeng, C. Zeng, X. Wang, B. Li, and X. Chu, “Incentive mechanisms in federated learning and a game-theoretical approach,” IEEE Network, 2022.
  75. W. Du, D. Xu, X. Wu, and H. Tong, “Fairness-aware agnostic federated learning,” in Proc. SIAM International Conference on Data Mining (SDM), 2021.
  76. T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair resource allocation in federated learning,” in Proc. International Conference on Learning Representation (ICLR), 2020.
  77. M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in Proc. International Conference on Machine Learning (ICML), 2019.
  78. T. Huang, W. Lin, W. Wu, L. He, K. Li, and A. Y. Zomaya, “An efficiency-boosting client selection scheme for federated learning with fairness guarantee,” IEEE Transactions on Parallel and Distributed Systems, 2021.
  79. C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in Proc. Theory of Cryptography, 2006.
  80. R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against machine learning models,” in Proc. IEEE Symposium on Security and Privacy (SP), 2017.
  81. N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret sharer: Evaluating and testing unintended memorization in neural networks,” in Proc. USENIX Security Symposium, 2019.
  82. Learning with privacy at scale. Apple. [Online]. Available: https://machinelearning.apple.com/research/learning-with-privacy-at-scale
  83. K. Wei, J. Li, M. Ding, C. Ma, H. Su, B. Zhang, and H. V. Poor, “User-level privacy-preserving federated learning: Analysis and performance optimization,” IEEE Transactions on Mobile Computing.
  84. M. Kim, O. Günlü, and R. F. Schaefer, “Federated learning with local differential privacy: Trade-offs between privacy, utility, and communication,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.
  85. X. Zhou and J. Tan, “Local differential privacy for bayesian optimization,” in Proc. AAAI Conference on Artificial Intelligence, 2021.
  86. R. Hu, Y. Guo, H. Li, Q. Pei, and Y. Gong, “Personalized federated learning with differential privacy,” IEEE Internet of Things Journal, 2020.
  87. R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated learning: A client level perspective,” arXiv, 2017.
  88. H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differentially private recurrent language models,” in Proc. International Conference on Learning Representations (ICLR), 2018.
  89. J. Böhler and F. Kerschbaum, “Secure multi-party computation of differentially private median,” in Proc. USENIX Security Symposium, 2020.
  90. S. Goryczka and L. Xiong, “A comprehensive comparison of multiparty secure additions with differential privacy,” IEEE Transactions on Dependable and Secure Computing, 2015.
  91. P. Samarati and L. Sweeney, “Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression,” 1998.
  92. H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from homomorphic encryption,” in Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2017.
  93. M. J. Freedman, C. Hazay, K. Nissim, and B. Pinkas, “Efficient set intersection with simulation-based security,” Journal of Cryptology, 2016.
  94. M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching and set intersection,” in Proc. International conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 2004.
  95. Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled circuits better than custom protocols?” in Proc. Network and Distributed System Security Symposium (NDSS), 2012.
  96. V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu, “Practical multi-party private set intersection from symmetric-key techniques,” in Proc. ACM SIGSAC Conference on Computer and Communications Security (CCS), 2017.
  97. W. Zheng, R. Deng, W. Chen, R. A. Popa, A. Panda, and I. Stoica, “CEREBRO: a platform for Multi-Party cryptographic collaborative learning,” in Proc. USENIX Security Symposium, 2021.
  98. G. Cormode, “Data sketching,” Communications of the ACM (CACM), 2017.
  99. B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communications of the ACM (CACM), 1970.
  100. F. Kerschbaum, “Outsourced private set intersection using homomorphic encryption,” in Proc. ACM Symposium on Information, Computer and Communications Security (ASIACCS), 2012.
  101. D. Many, M. Burkhart, and X. Dimitropoulos, “Fast private set operations with sepia,” ETZ G93, 2012.
  102. C. Dong, L. Chen, and Z. Wen, “When private set intersection meets big data: an efficient and scalable protocol,” in Proc. ACM SIGSAC Conference on Computer & Communications Security (CCS), 2013.
  103. B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection based on {{\{{OT}}\}} extension,” in Proc. USENIX Security Symposium, 2014.
  104. P. Rindal and M. Rosulek, “Improved private set intersection against malicious adversaries,” in Proc. International conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 2017.
  105. R. Inbar, E. Omri, and B. Pinkas, “Efficient scalable multiparty private set-intersection via garbled bloom filters,” in Proc. International Conference on Security and Cryptography for Networks (SCN), 2018.
  106. K. Chadha, J. Chen, J. Duchi, V. Feldman, H. Hashemi, O. Javidbakht, A. McMillan, and K. Talwar, “Differentially private heavy hitter detection using federated analytics,” arXiv, 2023.
  107. J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan, M. Al-Shedivat, G. Andrew, S. Avestimehr, K. Daly, D. Data et al., “A field guide to federated optimization,” arXiv, 2021.
  108. Y. Deng, T. Han, and N. Ansari, “Fedvision: Federated video analytics with edge computing,” IEEE Open Journal of the Computer Society, 2020.
  109. S. R. Pandey, M. N. Nguyen, T. N. Dang, N. H. Tran, K. Thar, Z. Han, and C. S. Hong, “Edge-assisted democratized learning toward federated analytics,” IEEE Internet of Things Journal, 2021.
  110. L. Toka, M. Konrád, I. Pelle, B. Sonkoly, M. Szabó, B. Sharma, S. Kumar, M. Annavazzala, S. T. Deekshitula, and A. A. Franklin, “5g on the roads: Latency-optimized federated analytics in the vehicular edge,” IEEE Access, 2023.
  111. S. Shi, Y. Guo, D. Wang, Y. Zhu, and Z. Han, “Distributionally robust federated learning for network traffic classification with noisy labels,” IEEE Transactions on Mobile Computing, 2023.
  112. B. Zhao, X. Li, X. Liu, Q. Pei, Y. Li, and R. H. Deng, “Crowdfa: A privacy-preserving mobile crowdsensing paradigm via federated analytics,” IEEE Transactions on Information Forensics and Security, 2023.
  113. J. Kang, J. Wen, D. Ye, B. Lai, T. Wu, Z. Xiong, J. Nie, D. Niyato, Y. Zhang, and S. Xie, “Blockchain-empowered federated learning for healthcare metaverses: User-centric incentive mechanism with optimal data freshness,” IEEE Transactions on Cognitive Communications and Networking, 2023.
  114. Y. Yu, D. Chen, X. Tang, T. Song, C. S. Hong, and Z. Han, “Incentive framework for cross-device federated learning and analytics with multiple tasks based on a multi-leader-follower game,” IEEE Transactions on Network Science and Engineering, 2022.
  115. S. Shi, C. Hu, D. Wang, Y. Zhu, and Z. Han, “Federated hd map updating through overlapping coalition formation game,” IEEE Transactions on Mobile Computing, 2023.
  116. K. Jung, S. Biswas, and C. Palamidessi, “Establishing the price of privacy in federated data trading,” in Protocols, Strands, and Logic, 2021.
  117. N. Li, W. Qardaji, and D. Su, “On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy,” in Proc. ACM Symposium on Information, Computer and Communications Security (ASIACCS), 2012.
  118. Y. Zhao and H. Sun, “Information theoretic secure aggregation with user dropouts,” IEEE Transactions on Information Theory, 2022.
  119. J. So, C. He, C.-S. Yang, S. Li, Q. Yu, R. E Ali, B. Guler, and S. Avestimehr, “Lightsecagg: a lightweight and versatile design for secure aggregation in federated learning,” in Proc. Machine Learning and Systems (MLSys), 2022.
  120. Z. Liu, J. Guo, K.-Y. Lam, and J. Zhao, “Efficient dropout-resilient aggregation for privacy-preserving machine learning,” IEEE Transactions on Information Forensics and Security, 2022.
  121. L. Shi, J. Shu, W. Zhang, and Y. Liu, “Hfl-dp: Hierarchical federated learning with differential privacy,” in Proc. IEEE Global Communications Conference (GLOBECOM), 2021.
  122. Z. Liu, J. Guo, W. Yang, J. Fan, K.-Y. Lam, and J. Zhao, “Privacy-preserving aggregation in federated learning: A survey,” IEEE Transactions on Big Data, 2022.
  123. A. Genevay, G. Dulac-Arnold, and J.-P. Vert, “Differentiable deep clustering with cluster size constraints,” arXiv, 2019.
  124. J. Li, W. Gan, Y. Gui, Y. Wu, and P. S. Yu, “Frequent itemset mining with local differential privacy,” in Proc. ACM International Conference on Information & Knowledge Management (CIKM), 2022.
  125. D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai, “Lightweight techniques for private heavy hitters,” in Proc. IEEE Symposium on Security and Privacy (SP), 2021.
  126. X. Yue, R. A. Kontar, and A. M. E. Gómez, “Federated data analytics: A study on linear models,” arXiv, 2022.
  127. D. Wang and J. Xu, “On sparse linear regression in the local differential privacy model,” in Proc. International Conference on Machine Learning (ICML), 2019.
  128. V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft, “Privacy-preserving ridge regression on hundreds of millions of records,” in Proc. IEEE Symposium on Security and Privacy (SP), 2013.
  129. A. Anand, S. Dhakal, M. Akdeniz, B. Edwards, and N. Himayat, “Differentially private coded federated linear regression,” in Proc. IEEE Data Science and Learning Workshop (DSLW), 2021.
  130. A. P. Sanil, A. F. Karr, X. Lin, and J. P. Reiter, “Privacy preserving regression modelling via distributed computation,” in Proc. ACM International Conference on Knowledge Discovery and Data Mining (KDD), 2004.
  131. A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and D. Evans, “Privacy-preserving distributed linear regression on high-dimensional data,” Proc. Privacy Enhancing Technologies, 2016.
  132. I. Giacomelli, S. Jha, M. Joye, C. D. Page, and K. Yoon, “Privacy-preserving ridge regression with only linearly-homomorphic encryption,” in Proc. International Conference on Applied Cryptography and Network Security (ACNS), 2018.
  133. L. Huang, Z. Li, J. Sun, and H. Zhao, “Coresets for vertical federated learning: Regularized linear regression and k𝑘kitalic_k-means clustering,” Advances in Neural Information Processing Systems (NeurIPS), 2022.
  134. M. Dai, Z. Zheng, Z. Hong, S. Zhang, and H. Wang, “Edge computing-aided coded vertical federated linear regression,” IEEE Transactions on Cognitive Communications and Networking, 2022.
  135. Z. Dai, B. K. H. Low, and P. Jaillet, “Federated bayesian optimization via thompson sampling,” Advances in Neural Information Processing Systems (NeurIPS), 2020.
  136. ——, “Differentially private federated bayesian optimization with distributed exploration,” Advances in Neural Information Processing Systems (NeurIPS), 2021.
  137. A. Chaulwar and M. Huth, “Secure bayesian federated analytics for privacy-preserving trend detection,” arXiv, 2021.
  138. I. Ng and K. Zhang, “Towards federated bayesian network structure learning with continuous optimization,” in Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.
  139. K. Dolui, I. Cuba Gyllensten, D. Lowet, S. Michiels, H. Hallez, and D. Hughes, “Poster: Towards privacy preserving mobile applications with federated learning: the case of matrix factorization,” in Proc. International Conference on Mobile Systems (MobiSys), 2019.
  140. S. Liu, Y. Ge, S. Xu, Y. Zhang, and A. Marian, “Fairness-aware federated matrix factorization,” in Proc. ACM Conference on Recommender Systems (RecSys), 2022.
  141. D. Gao, B. Tan, C. Ju, V. W. Zheng, and Q. Yang, “Privacy threats against federated matrix factorization,” arXiv, 2020.
  142. A. Grammenos, R. Mendoza Smith, J. Crowcroft, and C. Mascolo, “Federated principal component analysis,” Advances in Neural Information Processing Systems (NeurIPS), 2020.
  143. X. Guo, X. Li, X. Chang, S. Wang, and Z. Zhang, “Privacy-preserving distributed svd via federated power,” arXiv, 2021.
  144. A. Hartebrodt, R. Röttger, and D. B. Blumenthal, “Federated singular value decomposition for high dimensional data,” arXiv, 2022.
  145. Y. Wu, Z. Wang, D. Zeng, M. Li, Y. Shi, and J. Hu, “Decentralized unsupervised learning of visual representations,” 2022.
  146. F. Zhang, K. Kuang, Z. You, T. Shen, J. Xiao, Y. Zhang, C. Wu, Y. Zhuang, and X. Li, “Federated unsupervised representation learning,” arXiv, 2020.
  147. Q. Pan and Y. Zhu, “FedWalk: Communication efficient federated unsupervised node embedding with differential privacy,” in Proc. ACM Conference on Knowledge Discovery and Data Mining (KDD), 2022.
  148. H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning on non-iid data with reinforcement learning,” in Proc. IEEE Conference on Computer Communications (INFOCOM), 2020.
  149. F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient federated learning via guided participant selection,” in Proc. USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2021.
  150. Y. J. Cho, J. Wang, and G. Joshi, “Towards understanding biased client selection in federated learning,” in Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.
  151. A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated learning,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  152. C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical clustering of local updates to improve training on non-iid data,” in Proc. International Joint Conference on Neural Networks (IJCNN), 2020.
  153. T. Liang, C. Yuan, C. Lu, Y. Li, J. Yuan, and Y. Yin, “Efficient one-off clustering for personalized federated learning,” Knowledge-Based Systems, 2023.
  154. A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient framework for clustered federated learning,” Advances in Neural Information Processing Systems (NeurIPS), 2020.
  155. Y. J. Cho, J. Wang, T. Chirvolu, and G. Joshi, “Communication-efficient and model-heterogeneous personalized federated learning via clustered knowledge transfer,” IEEE Journal of Selected Topics in Signal Processing, 2023.
  156. Y. Ruan and C. Joe-Wong, “Fedsoft: Soft clustered federated learning with proximal local updating,” in Proc. AAAI Conference on Artificial Intelligence, 2022.
  157. D. Mulvey, C. H. Foh, M. A. Imran, and R. Tafazolli, “Cellular network antenna tilt anomaly detection using federated unsupervised learning,” in Proc. IEEE International Conference on Communications (ICC), 2023.
  158. S. Wang, M. Chen, W. Saad, and C. Yin, “Federated learning for energy-efficient task computing in wireless networks,” in Proc. IEEE International Conference on Communications (ICC), 2020.
  159. Z. Chen, M. Simsek, and B. Kantarci, “Federated learning-based risk-aware decision to mitigate fake task impacts on crowdsensing platforms,” in Proc. IEEE International Conference on Communications (ICC), 2021.
  160. H. Xing, H. Zhang, X. Wang, L. Xu, Z. Xiao, B. Zhao, S. Luo, L. Feng, and Y. Dai, “A multi-user deep semantic communication system based on federated learning with dynamic model aggregation,” in Proc. IEEE International Conference on Communications Workshops (ICC Workshops), 2023.
  161. Y. Wang, Y. Yang, and T. Luo, “Federated convolutional auto-encoder for optimal deployment of uavs with visible light communications,” in Proc. IEEE International Conference on Communications Workshops (ICC Workshops), 2020.
  162. R. Zhao, L. Yang, Y. Wang, Z. Xue, G. Gui, and T. Ohtsuki, “A semi-supervised federated learning scheme via knowledge distillation for intrusion detection,” in Proc. IEEE International Conference on Communications Workshops (ICC Workshops), 2022.
  163. Z. Wang, Y. Jiang, F.-C. Zheng, M. Bennis, and X. You, “Content popularity prediction in fog-rans: A clustered federated learning based approach,” in Proc. IEEE International Conference on Communications Workshops (ICC Workshops), 2022.
  164. Q. Ye, H. Hu, M. H. Au, X. Meng, and X. Xiao, “Towards locally differentially private generic graph metric estimation,” in Proc. IEEE International Conference on Data Engineering (ICDE), 2020.
  165. X. Ren, L. Shi, W. Yu, S. Yang, C. Zhao, and Z. Xu, “Ldp-ids: Local differential privacy for infinite data streams,” in Proc. International Conference on Management of Data (SIGMOD), 2022.
  166. Y. Wu, X. Cao, J. Jia, and N. Z. Gong, “Poisoning attacks to local differential privacy protocols for Key-Value data,” in Proc. USENIX Security Symposium, 2022.
  167. N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui, H. Shin, J. Shin, and G. Yu, “Collecting and analyzing multidimensional data with local differential privacy,” in Proc. IEEE International Conference on Data Engineering (ICDE), 2019.
  168. M. Syamkumar, Y. Gullapalli, W. Tang, P. Barford, and J. Sommers, “BigBen: Telemetry processing for internet-wide event monitoring,” IEEE Transactions on Network and Service Management, 2022.
  169. S. Fu, D. Reimer, S. Dong, Y. Zhu, and S. Ratnasamy, “Comverse: A federative-by-design platform for community computing,” 2023.
  170. E. Oriero and M. A. Rahman, “Privacy preserving fine-grained data distribution aggregation for smart grid ami networks,” in Proc. IEEE Military Communications Conference (MILCOM), 2018.
Citations (1)

Summary

We haven't generated a summary for this paper yet.