Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The cosmological constant problem and the effective potential of a gravity-coupled scalar (2404.12357v2)

Published 18 Apr 2024 in hep-th

Abstract: We consider a quantum scalar field in a classical (Euclidean) De Sitter background, whose radius is fixed dynamically by Einstein's equations. In the case of a free scalar, it has been shown by Becker and Reuter that if one regulates the quantum effective action by putting a cutoff $N$ on the modes of the quantum field, the radius is driven dynamically to infinity when $N$ tends to infinity. We show that this result holds also in the case of a self-interacting scalar, both in the symmetric and broken-symmetry phase. Furthermore, when the gravitational background is put on shell, the quantum corrections to the mass and quartic self-coupling are found to be finite.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. N. Straumann, CERN lectures on Einstein’s Impact on the Physics of the Twentieth Century (2005) https://indico.cern.ch/event/425387/attachments/903020/1273882/lect.5.pdf
  2. Y.B. Zeldovich, “Cosmological Constant and Elementary Particles,” JETP Lett. 6 (1967), 316
  3. E.K. Akhmedov, “Vacuum energy and relativistic invariance,” arXiv:hep-th/0204048 [hep-th].
  4. G. Ossola and A. Sirlin, “Considerations concerning the contributions of fundamental particles to the vacuum energy density,” Eur. Phys. J. C 31 (2003), 165-175 [arXiv:hep-ph/0305050 [hep-ph]].
  5. M. Becker and M. Reuter, “Background Independent Field Quantization with Sequences of Gravity-Coupled Approximants,” Phys. Rev. D 102 (2020) no.12, 125001 [arXiv:2008.09430 [gr-qc]].
  6. M. Becker and M. Reuter, “Background independent field quantization with sequences of gravity-coupled approximants. II. Metric fluctuations,” Phys. Rev. D 104 (2021) no.12, 125008 [arXiv:2109.09496 [hep-th]].
  7. R. Banerjee, M. Becker and R. Ferrero, “N-cutoff regularization for fields on hyperbolic space,” Phys. Rev. D 109 (2024) no.2, 025008 [arXiv:2302.03547 [hep-th]].
  8. E.J. Weinberg and A.q. Wu, “Understanding complex perturbative effective potentials,” Phys. Rev. D 36 (1987), 2474
  9. D. Benedetti, “Critical behavior in spherical and hyperbolic spaces,” J. Stat. Mech. 1501 (2015), P01002 [arXiv:1403.6712 [cond-mat.stat-mech]].
  10. J. Madore, “The Fuzzy sphere,” Class. Quant. Grav. 9 (1992), 69-88
  11. G. Fiore and F. Pisacane, “Fuzzy circle and new fuzzy sphere through confining potentials and energy cutoffs,” J. Geom. Phys. 132 (2018), 423-451 [arXiv:1709.04807 [math-ph]].
  12. C. Pagani and M. Reuter, “Background Independent Quantum Field Theory and Gravitating Vacuum Fluctuations,” Annals Phys. 411 (2019), 167972 [arXiv:1906.02507 [gr-qc]].
  13. R. Ferrero and M. Reuter, “The spectral geometry of de Sitter space in asymptotic safety,” JHEP 08 (2022), 040 [arXiv:2203.08003 [hep-th]].
  14. S.W. Hawking, “Zeta Function Regularization of Path Integrals in Curved Space-Time,” Commun. Math. Phys. 55 (1977), 133
  15. R. Arnowitt, S. Deser and C.W. Misner, “Finite Self-Energy of Classical Point Particles,” Phys. Rev. Lett. 4 (1960), 375-377
  16. B. DeWitt, “Gravity: A Universal regulator?,” Phys. Rev. Lett. 13 (1964), 114-118
  17. C.J. Isham, A. Salam and J.A. Strathdee, “Infinity suppression in gravity modified quantum electrodynamics,” Phys. Rev. D 3 (1971), 1805-1817
  18. T. Thiemann, “QSD 5: Quantum gravity as the natural regulator of matter quantum field theories,” Class. Quant. Grav. 15 (1998), 1281-1314 [arXiv:gr-qc/9705019 [gr-qc]].
  19. S.L. Adler, “Effective Action Model for the Vanishing of the Cosmological Constant,” Phys. Rev. Lett. 62 (1989), 373-375
  20. T.R. Taylor and G. Veneziano, “Quenching the Cosmological Constant,” Phys. Lett. B 228 (1989), 311-316
  21. T.R. Taylor and G. Veneziano, “Quantum Gravity at Large Distances and the Cosmological Constant,” Nucl. Phys. B 345 (1990), 210-230

Summary

We haven't generated a summary for this paper yet.