Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Area laws from classical entropies (2404.12320v1)

Published 18 Apr 2024 in quant-ph, hep-th, math-ph, and math.MP

Abstract: The area law-like scaling of local quantum entropies is the central characteristic of the entanglement inherent in quantum fields, many-body systems, and spacetime. Whilst the area law is primarily associated with the entanglement structure of the underlying quantum state, we here show that it equally manifests in classical entropies over measurement distributions when vacuum contributions dictated by the uncertainty principle are subtracted. Using the examples of the Gaussian ground and thermal states, but also the non-Gaussian particle state of a relativistic scalar field, we present analytical and numerical area laws for the entropies of various distributions and unveil how quantities of widespread interest such as the central charge and the (local) temperature are encoded in classical observables. With our approach, quantum entropies are no longer necessary to probe quantum phenomena, thereby rendering area laws and other quantum features directly accessible to theoretical models of high complexity as well as state-of-the-art experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. J. D. Bekenstein, Black Holes and Entropy, Phys. Rev. D 7, 2333 (1973).
  2. P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. Theo. Exp. 2004, P06002 (2004).
  3. P. Calabrese and J. Cardy, Entanglement Entropy and Quantum Field Theory: A Non-Technical Introduction, Int. J. Quantum Inf. 04, 429 (2006).
  4. M. B. Hastings, An area law for one-dimensional quantum systems, J. Stat. Mech.: Theo. Exp. 2007, P08024 (2007).
  5. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A Math. Theo. 42, 504005 (2009).
  6. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A Math. Theo. 42, 504007 (2009).
  7. I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free lattice models, J. Phys. A: Math. Theo. 42, 504003 (2009).
  8. J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).
  9. S. W. Hawking, Particle creation by black holes, Comm. Math. Phys. 43, 199 (1975).
  10. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71, 666 (1993).
  11. C. Callan and F. Wilczek, On geometric entropy, Phys. Lett. B 333, 55 (1994).
  12. S. N. Solodukhin, Entanglement Entropy of Black Holes, Living Rev. Relativ. 14, 8 (2011).
  13. M. B. Plenio and S. Virmani, An Introduction to Entanglement Measures, Quantum Inf. Comput. 7, 1–51 (2007).
  14. M. P. Hertzberg, Entanglement entropy in scalar field theory, J. Phys. A Math. Theo. 46, 015402 (2012).
  15. H. Casini, M. Huerta, and J. A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev. D 89, 085012 (2014).
  16. E. P. Wigner, On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev. 40, 749 (1932).
  17. K. Husimi, Some formal properties of the density matrix, Proc. Phys.-Math. Soc. Jap. 3rd Ser. 22, 264 (1940).
  18. W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH Verlag Berlin, 2001).
  19. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 2013).
  20. See Supplemental Material at [URL will be inserted by publisher] for details.
  21. B. Hatfield, Quantum Field Theory Of Point Particles And Strings (CRC Press, 2018).
  22. W.-M. Zhang, D. H. Feng, and R. Gilmore, Coherent states: Theory and some applications, Rev. Mod. Phys. 62, 867 (1990).
  23. C. Zachos and T. Curtright, Phase-Space Quantization of Field Theory, Prog. Theo. Phys. Supp. 135, 244 (1999).
  24. J. A. R. Cembranos and M. Skowronek, Functional Quantum Field Theory in Phase Space, arXiv:2108.06268  (2021).
  25. A. Polkovnikov, Phase space representation of quantum dynamics, Ann. Phys. 325, 1790 (2010).
  26. A. I. Lvovsky and M. G. Raymer, Continuous-variable optical quantum-state tomography, Rev. Mod. Phys. 81, 299 (2009).
  27. In the quantum optics literature the Husimi Q𝑄Qitalic_Q-distribution is usually defined with an additional factor of 2⁢π2𝜋2\pi2 italic_π [33]. However, all quantities of our interest are relative information measures and hence do not depend on the normalization.
  28. At this point, the parameter ϵitalic-ϵ\epsilonitalic_ϵ also ensures correct mass dimensions.
  29. A. Hertz and N. J. Cerf, Continuous-variable entropic uncertainty relations, J. Phys. A Math. Theor. 52, 173001 (2019).
  30. I. Białynicki-Birula and J. Mycielski, Uncertainty relations for information entropy in wave mechanics, Commun. Math. Phys. 44, 129 (1975).
  31. A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50, 221 (1978).
  32. A. Wehrl, On the relation between classical and quantum-mechanical entropy, Rep. Math. Phys. 16, 353 (1979).
  33. E. H. Lieb, Proof of an entropy conjecture of Wehrl, Commun. Math. Phys. 62, 35 (1978).
  34. E. H. Lieb and J. P. Solovej, Proof of an entropy conjecture for Bloch coherent spin states and its generalizations, Acta Math. 212, 379 (2014).
  35. Z. Van Herstraeten and N. J. Cerf, Quantum Wigner entropy, Phys. Rev. A 104, 042211 (2021).
  36. Z. Van Herstraeten, M. G. Jabbour, and N. J. Cerf, Continuous majorization in quantum phase space, Quantum 7, 1021 (2023).
  37. N. J. Cerf and T. Haas, Information and majorization theory for fermionic phase-space distributions, arXiv:2401.08523  (2024).
  38. S. Floerchinger, T. Haas, and B. Hoeber, Relative entropic uncertainty relation, Phys. Rev. A 103, 062209 (2021b).
  39. S. Floerchinger, T. Haas, and M. Schröfl, Relative entropic uncertainty relation for scalar quantum fields, SciPost Phys. 12, 089 (2022).
  40. S. Ditsch and T. Haas, Entropic distinguishability of quantum fields in phase space, arXiv:2307.06128  (2023).
  41. As we will see below, non-negativity of (10\@@italiccorr) is ensured for all entropic orders r𝑟ritalic_r in the case of Gaussian distributions.
  42. A. Serafini, Quantum Continuous Variables (CRC Press, 2017).
  43. The relations are generalizations of two relations found for finitely many bosonic modes when r→1→𝑟1r\to 1italic_r → 1, see [98].
  44. E. H. Lieb and R. Seiringer, Stronger subadditivity of entropy, Phys. Rev. A 71, 062329 (2005).
  45. Otherwise, a quasi-particle state is locally indistinguishable from the ground state.
  46. S. L. Braunstein, Homodyne statistics, Phys. Rev. A 42, 474 (1990).
  47. U. Leonhardt and H. Paul, Measuring the quantum state of light, Prog. Quantum. Electron. 19, 89 (1995).
  48. J. W. Noh, A. Fougères, and L. Mandel, Measurement of the quantum phase by photon counting, Phys. Rev. Lett. 67, 1426 (1991).
  49. J. W. Noh, A. Fougères, and L. Mandel, Operational approach to the phase of a quantum field, Phys. Rev. A 45, 424 (1992).
  50. O. Landon-Cardinal, L. C. G. Govia, and A. A. Clerk, Quantitative Tomography for Continuous Variable Quantum Systems, Phys. Rev. Lett. 120, 090501 (2018).
  51. T. J. Osborne and M. A. Nielsen, Entanglement in a simple quantum phase transition, Phys. Rev. A 66, 032110 (2002).
  52. A. Kitaev and J. Preskill, Topological Entanglement Entropy, Phys. Rev. Lett. 96, 110404 (2006).
  53. S. Xu and B. Swingle, Scrambling Dynamics and Out-of-Time-Ordered Correlators in Quantum Many-Body Systems, PRX Quantum 5, 010201 (2024).
  54. R. Hudson, When is the wigner quasi-probability density non-negative?, Rep. Math. Phys. 6, 249 (1974).
  55. D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71, 1291 (1993).
  56. M. Gärttner, T. Haas, and J. Noll, Detecting continuous-variable entanglement in phase space with the Q𝑄Qitalic_Q distribution, Phys. Rev. A 108, 042410 (2023a).
  57. M. Gärttner, T. Haas, and J. Noll, General Class of Continuous Variable Entanglement Criteria, Phys. Rev. Lett. 131, 150201 (2023b).
  58. G. Adesso, D. Girolami, and A. Serafini, Measuring Gaussian Quantum Information and Correlations Using the Rényi Entropy of Order 2, Phys. Rev. Lett. 109, 190502 (2012).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets