Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secure Semantic Communication for Image Transmission in the Presence of Eavesdroppers (2404.12170v1)

Published 18 Apr 2024 in eess.SP, cs.IT, and math.IT

Abstract: Semantic communication (SemCom) has emerged as a key technology for the forthcoming sixth-generation (6G) network, attributed to its enhanced communication efficiency and robustness against channel noise. However, the open nature of wireless channels renders them vulnerable to eavesdropping, posing a serious threat to privacy. To address this issue, we propose a novel secure semantic communication (SemCom) approach for image transmission, which integrates steganography technology to conceal private information within non-private images (host images). Specifically, we propose an invertible neural network (INN)-based signal steganography approach, which embeds channel input signals of a private image into those of a host image before transmission. This ensures that the original private image can be reconstructed from the received signals at the legitimate receiver, while the eavesdropper can only decode the information of the host image. Simulation results demonstrate that the proposed approach maintains comparable reconstruction quality of both host and private images at the legitimate receiver, compared to scenarios without any secure mechanisms. Experiments also show that the eavesdropper is only able to reconstruct host images, showcasing the enhanced security provided by our approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. Wong, and C. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 5–41, 2023.
  2. W. Yang, H. Du, Z. Q. Liew, W. Y. B. Lim, Z. Xiong, D. Niyato, X. Chi, X. Shen, and C. Miao, “Semantic communications for future internet: Fundamentals, applications, and challenges,” IEEE Commun. Surv. Tutorials, vol. 25, no. 1, pp. 213–250, 2023.
  3. G. Liu, H. Du, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, and X. Shen, “Semantic communications for artificial intelligence generated content (AIGC) toward effective content creation,” IEEE Wirel. Commun., pp. 1–1, 2024.
  4. E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-channel coding for wireless image transmission,” IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 3, pp. 567–579, 2019.
  5. J. Chen, D. You, D. Gündüz, and P. L. Dragotti, “Commin: Semantic image communications as an inverse problem with inn-guided diffusion models,” arXiv:2310.01130, 2023.
  6. T. Han, J. Tang, Q. Yang, Y. Duan, Z. Zhang, and Z. Shi, “Generative model based highly efficient semantic communication approach for image transmission,” in IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2023, pp. 1–5.
  7. T. Han, Q. Yang, Z. Shi, S. He, and Z. Zhang, “Semantic-preserved communication system for highly efficient speech transmission,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 245–259, 2022.
  8. Z. Yang, M. Chen, G. Li, Y. Yang, and Z. Zhang, “Secure semantic communications: Fundamentals and challenges,” arXiv, vol. abs/2301.01421, 2023.
  9. H. Du, J. Wang, D. Niyato, J. Kang, Z. Xiong, M. Guizani, and D. I. Kim, “Rethinking wireless communication security in semantic internet of things,” IEEE Wirel. Commun., vol. 30, no. 3, pp. 36–43, 2023.
  10. M. Zhang, Y. Li, Z. Zhang, G. Zhu, and C. Zhong, “Wireless image transmission with semantic and security awareness,” IEEE Wirel. Commun. Lett., vol. 12, no. 8, pp. 1389–1393, 2023.
  11. Y. Chen, Q. Yang, Z. Shi, and J. Chen, “The model inversion eavesdropping attack in semantic communication systems,” in IEEE Glob. Commun. Conf. (GLOBECOM), 2023, pp. 1–6.
  12. T. Tung and D. Gündüz, “Deep joint source-channel and encryption coding: Secure semantic communications,” in IEEE Int. Conf. Commun. ICC, 2023, pp. 5620–5625.
  13. X. Luo, Z. Chen, M. Tao, and F. Yang, “Encrypted semantic communication using adversarial training for privacy preserving,” IEEE Commun. Lett., vol. 27, no. 6, pp. 1486–1490, 2023.
  14. J. Xu, B. Ai, W. Chen, N. Wang, and M. R. D. Rodrigues, “Deep joint source-channel coding for image transmission with visual protection,” IEEE Trans. Cogn. Commun. Netw., vol. 9, no. 6, pp. 1399–1411, 2023.
  15. W. Chen, S. Shao, Q. Yang, Z. Zhang, and P. Zhang, “A nearly information theoretically secure approach for semantic communications over wiretap channel,” arXiv:2401.13980, 2024.
  16. S. Lu, R. Wang, T. Zhong, and P. L. Rosin, “Large-capacity image steganography based on invertible neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., (CVPR), 2021, pp. 10 816–10 825.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Shunpu Tang (14 papers)
  2. Chen Liu (206 papers)
  3. Qianqian Yang (93 papers)
  4. Shibo He (44 papers)
  5. Dusit Niyato (672 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com