Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-rank alternating direction doubling algorithm for solving large-scale continuous time algebraic Riccati equations (2404.12155v2)

Published 18 Apr 2024 in math.NA and cs.NA

Abstract: This paper proposes an effective low-rank alternating direction doubling algorithm (R-ADDA) for computing numerical low-rank solutions to large-scale sparse continuous-time algebraic Riccati matrix equations. The method is based on the alternating direction doubling algorithm (ADDA), utilizing the low-rank property of matrices and employing Cholesky factorization for solving. The advantage of the new algorithm lies in computing only the $2k$-th approximation during the iterative process, instead of every approximation. Its efficient low-rank formula saves storage space and is highly effective from a computational perspective. Finally, the effectiveness of the new algorithm is demonstrated through theoretical analysis and numerical experiments.

Summary

We haven't generated a summary for this paper yet.