Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster Optimization Through Genetic Drift (2404.12147v1)

Published 18 Apr 2024 in cs.NE and math.PR

Abstract: The compact Genetic Algorithm (cGA), parameterized by its hypothetical population size $K$, offers a low-memory alternative to evolving a large offspring population of solutions. It evolves a probability distribution, biasing it towards promising samples. For the classical benchmark OneMax, the cGA has to two different modes of operation: a conservative one with small step sizes $\Theta(1/(\sqrt{n}\log n))$, which is slow but prevents genetic drift, and an aggressive one with large step sizes $\Theta(1/\log n)$, in which genetic drift leads to wrong decisions, but those are corrected efficiently. On OneMax, an easy hill-climbing problem, both modes lead to optimization times of $\Theta(n\log n)$ and are thus equally efficient. In this paper we study how both regimes change when we replace OneMax by the harder hill-climbing problem DynamicBinVal. It turns out that the aggressive mode is not affected and still yields quasi-linear runtime $O(n\cdot polylog (n))$. However, the conservative mode becomes substantially slower, yielding a runtime of $\Omega(n2)$, since genetic drift can only be avoided with smaller step sizes of $O(1/n)$. We complement our theoretical results with simulations.

Summary

We haven't generated a summary for this paper yet.