Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamics Over Homogeneous Spaces (2404.12101v1)

Published 18 Apr 2024 in math.DG, math-ph, and math.MP

Abstract: We present the Euler-Lagrange and Hamilton's equations for a system whose configuration space is a unified product Lie group $G=M\bowtie_{\gamma} H$, for some $\gamma:M\times M \to H$. By reduction, then, we obtain the Euler-Lagrange type and Hamilton's type equations of the same form for the quotient space $M\cong G/H$, although it is not necessarily a Lie group. We observe, through further reduction, that it is possible to formulate the Euler-Poincar\'{e} type and Lie-Poisson type equations on the corresponding quotient $\mathfrak{m}\cong \mathfrak{g}/\mathfrak{h}$ of Lie algebras, which is not a priori a Lie algebra. Moreover, we realize the $n$th order iterated tangent group $T{(n)}G$ of a Lie group $G$ as an extension of the $n$th order tangent group $TnG$ of the same type. More precisely, $\mathfrak{g}$ being the Lie algebra of $G$, $T{(n)}G \cong \mathfrak{g}{\times \,2n-1-n} \bowtie_\gamma TnG$ for some $\gamma:\mathfrak{g}{\times \,2n-1-n} \times \mathfrak{g}{\times \,2n-1-n} \to TnG$. We thus obtain the $n$th order Euler-Lagrange (and then the $n$th order Euler-Poincar\'e) equations over $TnG$ by reduction from those on $T(T{n-1}G)$. Finally, we illustrate our results in the realm of the Kepler problem, and the non-linear tokamak plasma dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. R. Abraham and J. E. Marsden. Foundations of mechanics. Benjamin/Cummings Publishing Company Reading, Massachusetts, 1978.
  2. Cubic polynomials on Lie groups: reduction of the Hamiltonian system. J. Phys. A: Math. Theor., 44(35):(Article No. 355203), 2011.
  3. A. L. Agore and G. Militaru. Extending structures for Lie algebras. Monatsh. Math., 174(2):169–193, 2014.
  4. A. L. Agore and G. Militaru. Extending structures I: the level of groups. Algebr. Represent. Theory, 17(3):831–848, 2014.
  5. A. L. Agore and G. Militaru. Extending Structures: Fundamentals and Applications. CRC Press, Taylor & Francis Group, 2019. Chapman & Hall/CRC Monographs and Research Notes in Mathematics.
  6. V. I. Arnold. Mathematical methods of classical mechanics, volume 60. Springer Science & Business Media, 1989.
  7. Y. Bespalov and B. Drabant. Cross product bialgebras. II. J. Algebra, 240(2):445–504, 2001.
  8. Lagrangian reduction, the Euler-Poincaré equations, and semidirect products. Translations of the American Mathematical Society-Series 2, 186:1–26, 1998.
  9. Lagrangian reduction by stages, volume 722. American Mathematical Soc., 2001.
  10. L. Colombo and D. M. de Diego. Optimal control of underactuated mechanical systems with symmetries. Discrete Continuous Dyn. Syst., Supplement:149–158, 2013.
  11. L. Colombo and D. M. de Diego. Higher-order variational problems on Lie groups and optimal control applications. J. Geom. Mech., 6(4):451–478, 2014.
  12. L. Colombo and P. D. Prieto-Martínez. Unified formalism for higher-order variational problems and its applications in optimal control. Int. J. Geom. Methods Mod. Phys., 11(04):1450034, 2014.
  13. Bicocycle Double Cross Constructions. J. Algebra Appl., (Article No. 2350254), 2022.
  14. Second order Lagrangian dynamics on double cross product groups. J. Geom. Phys., 159:103934, 18 pp., 2021.
  15. O. Esen and S. Sütlü. Hamiltonian dynamics on matched pairs. Int. J. Geom. Methods Mod. Phys., 13(10):1650128, 24, 2016.
  16. O. Esen and S. Sütlü. Lagrangian dynamics on matched pairs. J. Geom. Phys., 111:142–157, 2017.
  17. Invariant higher-order variational problems. Comm. Math. Phys., 309(2):413–458, 2012.
  18. Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions. Bulletin of the Brazilian Mathematical Society, New Series, 42(4):579–606, 2011.
  19. Hamiltonian fourfield model for nonlinear tokamak dynamics. Phys. Fluids, 30, 1987.
  20. Hamiltonian fourfield model for nonlinear tokamak dynamics. Phys. Fluids, 28, 1985.
  21. S. Helgason. Differential geometry and symmetric spaces. Pure and Applied Mathematics, Vol. XII. Academic Press, New York-London, 1962.
  22. A. Klimyk and K. Schmüdgen. Quantum groups and their representations. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997.
  23. Natural operations in differential geometry. Springer-Verlag, Berlin, 1993.
  24. S. Majid. Physics for algebraists: noncommutative and noncocommutative Hopf algebras by a bicrossproduct construction. J. Algebra, 130(1):17–64, 1990.
  25. S. Majid. Foundations of quantum group theory. Cambridge University Press, Cambridge, 1995.
  26. C. M. Marle. A property of conformally Hamiltonian vector fields; application to the Kepler problem. J. Geom. Mech., 4(2):181–206, 2012.
  27. J. Marsden and A. Weinstein. Reduction of symplectic manifolds with symmetry. Rep. Mathematical Phys., 5(1):121–130, 1974.
  28. Hamiltonian reduction by stages, volume 1913 of Lecture Notes in Mathematics. Springer, Berlin, 2007.
  29. J. E. Marsden and T. Ratiu. Reduction of Poisson manifolds. Lett. Math. Phys., 11, 1986.
  30. R. W. Sharpe. Differential geometry, volume 166 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. Cartan’s generalization of Klein’s Erlangen program, With a foreword by S. S. Chern.
  31. Classification and Casimir invariants of Lie-Poisson brackets. Phys. D, 136(3-4):205–244, 2000.
  32. C. Vizman. The group structure for jet bundles over Lie groups. J. Lie Theory, 23(3):885–897, 2013.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com