Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing the diffusion coefficient of overdamped Langevin dynamics (2404.12087v2)

Published 18 Apr 2024 in math.NA and cs.NA

Abstract: Overdamped Langevin dynamics are reversible stochastic differential equations which are commonly used to sample probability measures in high-dimensional spaces, such as the ones appearing in computational statistical physics and Bayesian inference. By varying the diffusion coefficient, there are in fact infinitely many overdamped Langevin dynamics which are reversible with respect to the target probability measure at hand. This suggests to optimize the diffusion coefficient in order to increase the convergence rate of the dynamics, as measured by the spectral gap of the generator associated with the stochastic differential equation. We analytically study this problem here, obtaining in particular necessary conditions on the optimal diffusion coefficient. We also derive an explicit expression of the optimal diffusion in some appropriate homogenized limit. Numerical results, both relying on discretizations of the spectral gap problem and Monte Carlo simulations of the stochastic dynamics, demonstrate the increased quality of the sampling arising from an appropriate choice of the diffusion coefficient.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. Accelerated convergence to equilibrium and reduced asymptotic variance for Langevin dynamics using Stratonovich perturbations. Comptes Rendus Mathématique, 357(4):349–354, 2019.
  2. G. Allaire. Shape Optimization by the Homogenization Method, volume 146 of Applied Mathematical Sciences. Springer-Verlag New York, 2002.
  3. G. Allaire. Introduction to homogenization theory. CEA-EDF-Inria school on homogenization (December 2010), 2010. http://www.cmap.polytechnique.fr/∼similar-to\sim∼allaire/homog/lect1.pdf.
  4. Topology optimization of modulated and oriented periodic microstructures by the homogenization method. Comput. Math. Appl., 78(7):2197–2229, 2019.
  5. Computer Simulation of Liquids. Oxford University Press, Inc., 2nd edition, 2017.
  6. C. Andrieu and S. Livingstone. Peskun-Tierney ordering for Markovian Monte Carlo: beyond the reversible scenario. Ann. Statist., 49(4):1958–1981, 2021.
  7. Analysis and Geometry of Markov Diffusion Operators. Grundlehren der mathematischen Wissenschaften, Vol. 348. Springer, 2014.
  8. R. Balian. From Microphysics to Macrophysics. Methods and Applications of Statistical Physics, volume I - II. Springer, 2007.
  9. C. Barbarosie and A.-M. Toader. Shape and topology optimization for periodic problems. II. Optimization algorithm and numerical examples. Struct. Multidiscip. Optim., 40(1-6):393–408, 2010.
  10. C. H. Bennett. Mass tensor molecular dynamics. Journal of Computational Physics, 19(3):267–279, 1975.
  11. R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics. Springer, New York, NY, 1997.
  12. P. Billingsley. Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1999.
  13. X. Blanc and C. Le Bris. Homogenization Theory for Multiscale Problems. Modeling, Simulation and Applications. Springer Cham, 2023.
  14. Numerical Optimization: Theoretical and Practical Aspects. Universitext. Springer, 2nd edition, 2006.
  15. Fastest mixing Markov chain on graphs with symmetries. SIAM Journal on Optimization, 20(2):792–819, 2009.
  16. Fastest mixing Markov chain on a graph. SIAM Review, 46(4):667–689, 2004.
  17. Integral inequalities for convex functions of operators on martingales. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory, pages 223–240. University of California Press, 1972.
  18. Split Hamiltonian Monte Carlo revisited. Stat. Comput., 32(86), 2022.
  19. Optimal friction matrix for underdamped langevin sampling. ESAIM: Mathematical Modelling and Numerical Analysis, 57(6):3335–3371, 2023.
  20. Stochastic Gradient Hamiltonian Monte Carlo. In E. P. Xing and T. Jebara, editors, Proceedings of the 31st International Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages 1683–1691, Bejing, China, 22–24 Jun 2014. PMLR.
  21. Gradient flows for sampling: Mean-field models, Gaussian approximations and affine invariance. arXiv preprint, 2302.11024, 2023.
  22. F. Comets and T. Meyre. Calcul stochastique et modèles de diffusions : cours et exercices corrigés. Dunod, Paris, 2006.
  23. Optimal Riemannian metric for Poincaré inequalities and how to ideally precondition Langevin dymanics. arXiv preprint, 2404.02554, 2024.
  24. Variance reduction using nonreversible Langevin samplers. J. Stat. Phys., 163(3):457–491, 2016.
  25. Using Perturbed Underdamped Langevin Dynamics to Efficiently Sample from Probability Distributions. J. Stat. Phys., 169(6):1098–1131, 2017.
  26. Nonreversible Langevin samplers: Splitting schemes, analysis and implementation. arXiv preprint, 1701.04247, 2017.
  27. Jump: A modeling language for mathematical optimization. SIAM Review, 59(2):295–320, 2017.
  28. An improved annealing method and its large-time behavior. Stochastic Process. Appl., 71(1):55–74, 1997.
  29. M. Fathi and G. Stoltz. Improving dynamical properties of stabilized discretizations of overdamped Langevin dynamics. Numer. Math., 136(2):545–602, 2017.
  30. D. Frenkel and B. Smit. Understanding Molecular Simulation. Academic Press, 2nd edition, 2002.
  31. D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order, volume 224 of Classics in Mathematics. Springer, Berlin, Heidelberg, 2001.
  32. M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123–214, 2011.
  33. P. W. Glynn and W. Whitt. The asymptotic efficiency of simulation estimators. Oper. Res., 40(3):505–520, 1992.
  34. J. Goodman and J. Weare. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci., 5(1):65–80, 2010.
  35. J. Haslinger and J. Dvořák. Optimum composite material design. RAIRO Modél. Math. Anal. Numér., 29(6):657–686, 1995.
  36. W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109, 1970.
  37. B. Helffer. Remarks on decay of correlations and Witten Laplacians, Brascamp-Lieb inequalities and semiclassical limit. J. Funct. Anal., 155(2):571–586, 1998.
  38. A. Henrot. Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel - Boston - Berlin, 2006.
  39. Accelerating Gaussian diffusions. Ann. Appl. Probab., 3:897–913, 1993.
  40. Accelerating diffusions. Ann. Appl. Probab., 15:1433–1444, 2005.
  41. Enhanced sampling methods for molecular dynamics simulations. Living Journal of Computational Molecular Science, 4(1):1583, 2022.
  42. T. Kato. Perturbation Theory for Linear Operators, volume 132 of Grundlehren der mathematischen Wissenschaften. Springer, 1976.
  43. Rate of convergence of a two-scale expansion for some “weakly” stochastic homogenization problems. Asymptot. Anal., 80(3-4):237–267, 2012.
  44. B. Leimkuhler and C. Matthews. Molecular Dynamics: With Deterministic and Stochastic Numerical Methods. Springer, 2015.
  45. Ensemble preconditioning for Markov chain Monte Carlo simulation. Stat. Comput., 28:277–290, 2018.
  46. Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion. Journal of Statistical Physics, 152(2):237–274, 2013.
  47. Free-energy Computations: A Mathematical Perspective. Imperial College Press, 2010.
  48. Unbiasing Hamiltonian Monte Carlo algorithms for a general Hamiltonian function. arXiv preprint, 2303.15918, 2023.
  49. T. Lelièvre and G. Stoltz. Partial differential equations and stochastic methods in molecular dynamics. Acta Numerica, 25:681–880, 2016.
  50. S. Livingstone. Geometric ergodicity of the Random Walk Metropolis with position-dependent proposal covariance. Mathematics, 9(4), 2021.
  51. J. Lu and K. Spiliopoulos. Analysis of multiscale integrators for multiple attractors and irreversible Langevin samplers. Multiscale Model. Simul., 16(4):1859–1883, 2018.
  52. A. Lê. Eigenvalue problems for the p-Laplacian. Nonlinear Analysis: Theory, Methods & Applications, 64(5):1057–1099, 2006.
  53. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.
  54. G. A. Pavliotis. Stochastic processes and applications, volume 60 of Texts in Applied Mathematics. Springer, New York, 2014. Diffusion processes, the Fokker-Planck and Langevin equations.
  55. Numerical methods with coordinate transforms for efficient Brownian dynamics simulations. arXiv preprint, 2307.02913, 2023.
  56. M. Reed and B. Simon. Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press, New York-London, 1972.
  57. M. Reed and B. Simon. Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York-London, 1978.
  58. L. Rey-Bellet and K. Spiliopoulos. Irreversible Langevin samplers and variance reduction: A large deviations approach. Nonlinearity, 28:2081–2103, 2015.
  59. L. Rey-Bellet and K. Spiliopoulos. Improving the convergence of reversible samplers. J. Stat. Phys., 164(3):472–494, 2016.
  60. C. P. Robert. The Bayesian Choice. Springer Texts in Statistics. Springer, New York, second edition, 2007.
  61. G. O. Roberts and O. Stramer. Langevin diffusions and Metropolis-Hastings algorithms. Methodology and Computing in Applied Probability, 4:337–357, 2002.
  62. Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli, 2(4):341–363, 1996.
  63. Brownian dynamics as smart Monte Carlo simulation. J. Chem. Phys., 69(10):4628–4633, 1978.
  64. A. Saumard and J. A. Wellner. Log-concavity and strong log-concavity: a review. Stat. Surv., 8:45–114, 2014.
  65. O. Sigmund. Materials with prescribed constitutive parameters: An inverse homogenization problem. Internat. J. Solids Structures, 31(17):2313–2329, 1994.
  66. B. Simon. Trace ideals and their applications, volume 120 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, 2005.
  67. Multidimensional Diffusion Processes. Classics in Mathematics. Springer-Verlag, Berlin, 2006.
  68. M. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press, 2010.
  69. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.
  70. A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, Mar 2006.
  71. Geometry-informed irreversible perturbations for accelerated convergence of Langevin dynamics. Stat. Comput., 32(5):Paper No. 78, 22, 2022.
  72. V. V. Zhikov. Weighted Sobolev spaces. Sbornik: Mathematics, 189(8):1139–1170, 1998.
Citations (2)

Summary

We haven't generated a summary for this paper yet.