Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Symbolic Computation for All the Fun (2404.12048v2)

Published 18 Apr 2024 in cs.LO

Abstract: Motivated by the recent 10 million dollar AIMO challenge, this paper targets the problem of finding all functions conforming to a given specification. This is a popular problem at mathematical competitions and it brings about a number of challenges, primarily, synthesizing the possible solutions and proving that no other solutions exist. Often, there are infinitely many solutions and then the set of solutions has to be captured symbolically. We propose an approach to solving this problem and evaluate it on a set of problems that appeared in mathematical competitions and olympics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. cvc5: A versatile and industrial-strength SMT solver, in: Tools and Algorithms for the Construction and Analysis of Systems, TACAS, volume 13243 of LNCS, Springer, 2022, pp. 415–442. doi:10.1007/978-3-030-99524-9_24.
  2. L. M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in: Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, volume 4963, Springer, 2008, pp. 337–340. doi:10.1007/978-3-540-78800-3_24.
  3. L. Kovács, A. Voronkov, First-order theorem proving and Vampire, in: N. Sharygina, H. Veith (Eds.), Computer Aided Verification - 25th International Conference, CAV, volume 8044 of Lecture Notes in Computer Science, Springer, 2013, pp. 1–35. doi:10.1007/978-3-642-39799-8_1.
  4. T. Hillenbrand, B. Löchner, The next Waldmeister loop, in: A. Voronkov (Ed.), Automated Deduction - CADE-18, 18th International Conference on Automated Deduction, volume 2392 of Lecture Notes in Computer Science, 2002, pp. 486–500. doi:10.1007/978-3-540-45085-6_27.
  5. Completion without failure, in: Rewriting Techniques, Elsevier, 1989, pp. 1–30.
  6. G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decompostion, in: H. Brakhage (Ed.), Automata Theory and Formal Languages, Springer Berlin Heidelberg, Berlin, Heidelberg, 1975, pp. 134–183.
  7. D. C. Cooper, Theorem proving in arithmetic without multiplication, Machine intelligence 7 (1972) 300.
  8. J. Ferrante, C. Rackoff, A decision procedure for the first order theory of real addition with order, SIAM Journal on Computing 4 (1975) 69–76. URL: https://doi.org/10.1137/0204006. doi:10.1137/0204006.
  9. R. Loos, V. Weispfenning, Applying linear quantifier elimination, Comput. J. 36 (1993) 450–462. doi:10.1093/COMJNL/36.5.450.
  10. N. S. Bjørner, M. Janota, Playing with quantified satisfaction, in: LPAR, EasyChair, 2015, pp. 15–27. doi:10.29007/VV21.
  11. F. Vale-Enriquez, C. W. Brown, Polynomial constraints and unsat cores in Tarski, in: J. H. Davenport, M. Kauers, G. Labahn, J. Urban (Eds.), Mathematical Software - ICMS 2018 - 6th International Conference, South Bend, IN, USA, July 24-27, 2018, Proceedings, volume 10931 of Lecture Notes in Computer Science, Springer, 2018, pp. 466–474. doi:10.1007/978-3-319-96418-8_55.
  12. G. E. Collins, H. Hong, Partial cylindrical algebraic decomposition for quantifier elimination, J. Symb. Comput. 12 (1991) 299–328. doi:10.1016/S0747-7171(08)80152-6.
  13. Solving olympiad geometry without human demonstrations, Nature 625 (2024) 476–482. doi:10.1038/s41586-023-06747-5.
  14. Template-based program verification and program synthesis, Int. J. Softw. Tools Technol. Transf. 15 (2013) 497–518. doi:10.1007/S10009-012-0223-4.
  15. Program synthesis in saturation, in: B. Pientka, C. Tinelli (Eds.), Automated Deduction - CADE 29 - 29th International Conference on Automated Deduction, Rome, Italy, July 1-4, 2023, Proceedings, volume 14132 of Lecture Notes in Computer Science, Springer, 2023, pp. 307–324. doi:10.1007/978-3-031-38499-8_18.
  16. Synthesis of recursive programs in saturation, in: International Joint Conference on Automated Reasoning IJCAR, 2024.
  17. Refutation-based synthesis in SMT, Formal Methods Syst. Des. 55 (2019) 73–102. doi:10.1007/S10703-017-0270-2.
  18. Synthesising programs with non-trivial constants, J. Autom. Reason. 67 (2023) 19. doi:10.1007/S10817-023-09664-4.
  19. Extending enumerative function synthesis via SMT-driven classification, in: C. W. Barrett, J. Yang (Eds.), 2019 Formal Methods in Computer Aided Design, FMCAD 2019, San Jose, CA, USA, October 22-25, 2019, IEEE, 2019, pp. 212–220. doi:10.23919/FMCAD.2019.8894267.
  20. D. M. Cerna, A. Cropper, Generalisation through negation and predicate invention, Proceedings of the AAAI Conference on Artificial Intelligence 38 (2024) 10467–10475. URL: https://ojs.aaai.org/index.php/AAAI/article/view/28915. doi:10.1609/aaai.v38i9.28915.
Citations (1)

Summary

We haven't generated a summary for this paper yet.