Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monte Carlo method and the random isentropic Euler system (2404.11983v1)

Published 18 Apr 2024 in math.NA and cs.NA

Abstract: We show several results on convergence of the Monte Carlo method applied to consistent approximations of the isentropic Euler system of gas dynamics with uncertain initial data. Our method is based on combination of several new concepts. We work with the dissipative weak solutions that can be seen as a universal closure of consistent approximations. Further, we apply the set-valued version of the Strong law of large numbers for general multivalued mapping with closed range and the Koml\'os theorem on strong converge of empirical averages of integrable functions. Theoretical results are illustrated by a series of numerical simulations obtained by an unconditionally convergent viscosity finite volume method combined with the Monte Carlo method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Z. Artstein and J. C. Hansen. Convexification in limit laws of random sets in Banach spaces. Ann. Probab., 13(1):307–309, 1985.
  2. E. J. Balder. Lectures on Young measure theory and its applications in economics. Rend. Istit. Mat. Univ. Trieste, 31(suppl. 1):1–69, 2000. Workshop on Measure Theory and Real Analysis (Italian) (Grado, 1997).
  3. E.J. Balder. On weak convergence implying strong convergence in l1superscript𝑙1l^{1}italic_l start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT spaces. Bull. Austral. Math. Soc., 33:363–368, 1986.
  4. Solution semiflow to the isentropic Euler system. Arch. Ration. Mech. Anal., 235(1):167–194, 2020.
  5. Onsager’s conjecture for admissible weak solutions. Comm. Pure Appl. Math., 72(2):229–274, 2019.
  6. T. Buckmaster and V. Vicol. Convex integration and phenomenologies in turbulence. EMS Surv. Math. Sci., 6(1):173–263, 2019.
  7. Global ill-posedness for a dense set of initial data to the isentropic system of gas dynamics. Adv. Math., 393:Paper No. 108057, 46, 2021.
  8. E. Chiodaroli. A counterexample to well-posedness of entropy solutions to the compressible Euler system. J. Hyperbolic Differ. Equ., 11(3):493–519, 2014.
  9. Global ill-posedness of the isentropic system of gas dynamics. Comm. Pure Appl. Math., 68(7):1157–1190, 2015.
  10. E. Chiodaroli and E. Feireisl. On the density of ”wild” initial data for the barotropic Euler system. arxiv preprint No. 2208.04810, 2022.
  11. E. Chiodaroli and E. Feireisl. Glimm’s method and density of wild data for the Euler system of gas dynamics. Nonlinearity, 37(3):Paper No. 035005, 12, 2024.
  12. C. De Lellis and L. Székelyhidi, Jr. On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal., 195(1):225–260, 2010.
  13. N. Etemadi. An elementary proof of the strong law of large numbers. Z. Wahrsch. Verw. Gebiete, 55(1):119–122, 1981.
  14. E. Feireisl. A note on the long-time behavior of dissipative solutions to the Euler system. J. Evol. Equ., 21(3):2807–2814, 2021.
  15. E. Feireisl. (S)-convergence and approximation of oscillatory solutions in fluid dynamics. Nonlinearity, 34(4):2327–2349, 2021.
  16. On uniqueness of dissipative solutions to the isentropic Euler system. Comm. Partial Differential Equations, 44(12):1285–1298, 2019.
  17. E. Feireisl and M. Hofmanová. On convergence of approximate solutions to the compressible Euler system. Ann. PDE, 6(2):11, 2020.
  18. Approximating viscosity solutions of the Euler system. Math. Comp., 91(337): 2129–2164, 2022.
  19. Numerical Analysis of Compressible Fluid Flows. Springer-Verlag, Cham, 2022.
  20. E. Feireisl and M. Lukáčová-Medvid’ová. Statistical solutions for the Navier–Stokes–Fourier system. Stoch PDE: Anal Comp, DOI:10.1007/s40072-023-00298-6, 2023.
  21. Convergence and error analysis of compressible fluid flows with random data: Monte Carlo method. Math. Models Methods Appl. Sci., 32(14):2887–2925, 2022.
  22. 𝒦𝒦\mathcal{K}caligraphic_K-convergence as a new tool in numerical analysis. IMA J. Numer. Anal., 40(4):2227–2255, 2020.
  23. Computing oscillatory solutions of the Euler system via 𝒦𝒦\mathcal{K}caligraphic_K-convergence. Math. Mod.& Methods Appl. Sci., 31 (3): 537–576, 2021.
  24. V. Giri and H. Kwon. On non-uniqueness of continuous entropy solutions to the isentropic compressible Euler equations. Arch. Ration. Mech. Anal., 245(2):1213–1283, 2022.
  25. B. Guo and X. Wu. Qualitative analysis of solutions for the full compressible Euler equations in ℝNsuperscriptℝ𝑁\mathbb{R}^{N}blackboard_R start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT. Indiana Univ. Math. J., 67(1):343–373, 2018.
  26. Ch. Hess. On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence. J. Multivariate Anal., 39(1):175–201, 1991.
  27. J. Komlós. A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar., 18:217–229, 1967.
  28. Convergence analysis of the Monte Carlo method for the random Navier–Stokes–Fourier system, arxiv preprint No. 2304.00594, 2023.
  29. A. Majda. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, volume 53 of Applied Mathematical Sciences. Springer-Verlag, New York, 1984.
  30. J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York, 1967.
  31. Multidimensional Diffusion Processes. Classics in Mathematics. Springer-Verlag, Berlin, 2006. Reprint of the 1997 edition.
  32. P. Terán. A multivalued strong law of large numbers. J. Theoret. Probab., 29(2):349–358, 2016.

Summary

We haven't generated a summary for this paper yet.