Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Cloud Computing: A Review, Open Problems, and Future Directions (2404.11420v1)

Published 17 Apr 2024 in cs.ET and cs.DC

Abstract: Quantum cloud computing is an emerging paradigm of computing that empowers quantum applications and their deployment on quantum computing resources without the need for a specialized environment to host and operate physical quantum computers. This paper reviews recent advances, identifies open problems, and proposes future directions in quantum cloud computing. It discusses the state-of-the-art quantum cloud advances, including the various cloud-based models, platforms, and recently developed technologies and software use cases. Furthermore, it discusses different aspects of the quantum cloud, including resource management, quantum serverless, security, and privacy problems. Finally, the paper examines open problems and proposes the future directions of quantum cloud computing, including potential opportunities and ongoing research in this emerging field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (207)
  1. 1Qcloud. 2024. 1Qloud Optimization Platform - 1QBit. https://1qbit.com/1qloud/. Accessed: 2024-03-07.
  2. Complexity-theoretic limitations on blind delegated quantum computation. arXiv:1704.08482 [quant-ph]
  3. Nikita Acharya and Samah Mohamed Saeed. 2020. A Lightweight Approach to Detect Malicious/Unexpected Changes in the Error Rates of NISQ Computers. In Proceedings of the 39th International Conference on Computer-Aided Design (Virtual Event, USA) (ICCAD ’20). Association for Computing Machinery, New York, NY, USA, Article 153, 9 pages. https://doi.org/10.1145/3400302.3415684
  4. Engineering Software Systems for Quantum Computing as a Service: A Mapping Study. arXiv:2303.14713 [cs.SE]
  5. Zapata AI. [n. d.]. Orquestra Platform — zapata.ai. https://zapata.ai/platform-orquestra/. Accessed 13-12-2023.
  6. AQT. 2024. AQT realizes the first general-purpose Quantum Computer. https://www.aqt.eu/. Accessed: 2024-03-07.
  7. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 7848 (mar 2021), 54–60. https://doi.org/10.1038/s41586-021-03202-1
  8. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (oct 2019), 505–510. https://doi.org/10.1038/s41586-019-1666-5
  9. Quantum Machine Learning Algorithms for Drug Discovery Applications. Journal of Chemical Information and Modeling 61, 6 (jun 2021), 2641–2647. https://doi.org/10.1021/acs.jcim.1c00166
  10. Charles H. Bennett and Gilles Brassard. 2014. Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science 560 (2014), 7–11. https://doi.org/10.1016/j.tcs.2014.05.025
  11. Daniel J. Bernstein and Tanja Lange. 2017. Post-quantum cryptography. Nature 549, 7671 (sep 2017), 188–194. https://doi.org/10.1038/nature23461
  12. Comparison of Cloud-Based Ion Trap and Superconducting Quantum Computer Architectures. arXiv:2102.00371 [quant-ph]
  13. Commercial applications of quantum computing. EPJ Quantum Technol. 8, 1 (2021), 2. https://doi.org/10.1140/epjqt/s40507-021-00091-1
  14. Keith A. Britt and Travis S. Humble. 2017. High-Performance Computing with Quantum Processing Units. ACM Journal on Emerging Technologies in Computing Systems 13, 3 (mar 2017), 1–13. https://doi.org/10.1145/3007651
  15. Universal Blind Quantum Computation. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE, Atlanta, GA, USA, 517–526. https://doi.org/10.1109/focs.2009.36
  16. Post-Quantum Cryptography: State of the Art. In The New Codebreakers, Peter Y. A. Ryan and Naccache (Eds.). Vol. 9100. Springer Berlin Heidelberg, Berlin, Heidelberg, 88–108. https://doi.org/10.1007/978-3-662-49301-4_6
  17. A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade. ACM Comput. Surv. 51, 5, Article 105 (nov 2018), 38 pages. https://doi.org/10.1145/3241737
  18. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems 25, 6 (2009), 599–616. https://doi.org/10.1016/j.future.2008.12.001
  19. Quantum Internet: Networking Challenges in Distributed Quantum Computing. IEEE Network 34, 1 (2020), 137–143. https://doi.org/10.1109/MNET.001.1900092
  20. Distributed Quantum Computing: a Survey. http://arxiv.org/abs/2212.10609 arXiv:2212.10609 [quant-ph].
  21. Quantum Internet: From Communication to Distributed Computing!. In Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication (Reykjavik, Iceland) (NANOCOM ’18). Association for Computing Machinery, New York, NY, USA, Article 3, 4 pages. https://doi.org/10.1145/3233188.3233224
  22. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience 41, 1 (2011), 23–50. https://doi.org/10.1002/spe.995
  23. Earl T. Campbell. 2014. Enhanced Fault-Tolerant Quantum Computing in d-Level Systems. Physical Review Letters 113, 23 (Dec 2014). https://doi.org/10.1103/physrevlett.113.230501
  24. Potential of quantum computing for drug discovery. IBM Journal of Research and Development 62, 6 (nov 2018), 6:1–6:20. https://doi.org/10.1147/JRD.2018.2888987
  25. The Evolution of Quantum Key Distribution Networks: On the Road to the Qinternet. IEEE Communications Surveys & Tutorials 24, 2 (2022), 839–894. https://doi.org/10.1109/COMST.2022.3144219
  26. Error-Robust Quantum Logic Optimization Using a Cloud Quantum Computer Interface. Physical Review Applied 15, 6 (jun 2021). https://doi.org/10.1103/physrevapplied.15.064054
  27. Quantum Token for Network Authentication. In 2021 IEEE International Conference on Web Services (ICWS). IEEE, Chicago, IL, USA, 688–692. https://doi.org/10.1109/icws53863.2021.00095
  28. Experimental cryptographic verification for near-term quantum cloud computing. Science Bulletin 66, 1 (jan 2021), 23–28. https://doi.org/10.1016/j.scib.2020.08.013
  29. Resource Allocation in Quantum Networks for Distributed Quantum Computing. In 2022 IEEE International Conference on Smart Computing (SMARTCOMP). IEEE, Helsinki, Finland, 124–132. https://doi.org/10.1109/SMARTCOMP55677.2022.00032
  30. Asia Citynow. 2023. Enabling Serverless Quantum Computing with QuaO. https://citynow.asia/press/release/Enabling-Serverless-Quantum-Computing-with-QuaO
  31. Qemist Cloud. 2024. QEMIST Cloud – Good Chemistry Co. https://goodchemistry.com/qemist-cloud/. Accessed: 2024-03-07.
  32. Atom Computing. 2024. Atom Computing. https://atom-computing.com/. Accessed: 2024-03-07.
  33. Validating quantum computers using randomized model circuits. Physical Review A 100, 3 (sep 2019). https://doi.org/10.1103/physreva.100.032328
  34. Towards a distributed quantum computing ecosystem. IET Quantum Communication 1, 1 (jul 2020), 3–8. https://doi.org/10.1049/iet-qtc.2020.0002
  35. A Case for Multi-Programming Quantum Computers. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association for Computing Machinery, New York, NY, USA, 291–303. https://doi.org/10.1145/3352460.3358287
  36. A hierarchical approach for building distributed quantum systems. Scientific Reports 12, 1 (sep 2022). https://doi.org/10.1038/s41598-022-18989-w
  37. Materials challenges and opportunities for quantum computing hardware. Science 372, 6539 (apr 2021). https://doi.org/10.1126/science.abb2823
  38. Towards Quantum-algorithms-as-a-service. In Proceedings of the 1st International Workshop on Quantum Programming for Software Engineering. ACM, Singapore, 7–10. https://doi.org/10.1145/3549036.3562056
  39. Simon J. Devitt. 2016. Performing quantum computing experiments in the cloud. Physical Review A 94, 3 (2016), 1–13. https://doi.org/10.1103/PhysRevA.94.032329
  40. Zhao Dou. 2019. Rational Non-Hierarchical Quantum State Sharing Protocol. Computers, Materials & Continua 58, 2 (2019), 335–347. https://doi.org/10.32604/cmc.2019.04159
  41. Patrick Dreher and Madhuvanti Ramasami. 2019. Prototype Container-Based Platform for Extreme Quantum Computing Algorithm Development. In 2019 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, Waltham, MA, USA, 1–7. https://doi.org/10.1109/HPEC.2019.8916430
  42. Doubling the Size of Quantum Simulators by Entanglement Forging. PRX Quantum 3, 1 (jan 2022), 010309. https://doi.org/10.1103/PRXQuantum.3.010309
  43. Artur K. Ekert. 1991. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67 (Aug 1991), 661–663. Issue 6. https://doi.org/10.1103/PhysRevLett.67.661
  44. Blockchain-based delegated Quantum Cloud architecture for medical big data security. Journal of Network and Computer Applications 198 (feb 2022), 103304. https://doi.org/10.1016/j.jnca.2021.103304
  45. Hybrid Quantum Machine learning using Quantum Integrated Cloud Architecture (QICA). In 2023 International Conference on Computing, Networking and Communications (ICNC) (Honolulu, HI, USA). IEEE. https://doi.org/10.1109/ICNC57223.2023.10074394
  46. Quantum NETwork: from theory to practice. Science China Information Sciences 66, 8 (aug 2023), 180509. https://doi.org/10.1007/s11432-023-3773-4
  47. A Quantum Approximate Optimization Algorithm. arXiv:1411.4028 [quant-ph]
  48. Middleware for Quantum: An orchestration of hybrid quantum-classical systems. In 2023 IEEE International Conference on Quantum Software (QSW). IEEE Computer Society, Los Alamitos, CA, USA, 1–8. https://doi.org/10.1109/QSW59989.2023.00011
  49. Joseph F Fitzsimons. 2017. Private quantum computation: an introduction to blind quantum computing and related protocols. npj Quantum Information 3, 1 (2017), 23. https://doi.org/10.1038/s41534-017-0025-3
  50. Joseph F Fitzsimons and Elham Kashefi. 2017. Unconditionally verifiable blind quantum computation. Physical Review A 96, 1 (2017), 012303. https://doi.org/10.1103/PhysRevA.96.012303
  51. Jay Gambetta. 2020. IBM’s roadmap for scaling quantum technology. https://research.ibm.com/blog/ibm-quantum-roadmap
  52. Quantum Software as a Service Through a Quantum API Gateway. IEEE Internet Computing 26, 1 (2022), 34–41. https://doi.org/10.1109/MIC.2021.3132688
  53. Verification of quantum computation: An overview of existing approaches. Theory of computing systems 63 (2019), 715–808. https://doi.org/10.1007/s00224-018-9872-3
  54. A Primer on Security of Quantum Computing. arXiv:2305.02505 [quant-ph]
  55. CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy. In Proceedings of The 33rd International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.). PMLR, New York, USA, 201–210. https://doi.org/10.5555/3045390.3045413
  56. Sukhpal Singh Gill. 2021. Quantum and blockchain based Serverless edge computing: A vision, model, new trends and future directions. Internet Technology Letters n/a, n/a (2021), e275. https://doi.org/10.1002/itl2.275
  57. Ricardo Gobato. 2017. Calculations Using Quantum Chemistry for Inorganic Molecule Simulation BeLi<sub>2</sub>SeSi. Science Journal of Analytical Chemistry 5, 5 (2017), 76. https://doi.org/10.11648/j.sjac.20170505.13
  58. Towards AutoQML: A Cloud-Based Automated Circuit Architecture Search Framework. In 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C). IEEE Computer Society, Los Alamitos, CA, USA, 129–136. https://doi.org/10.1109/ICSA-C54293.2022.00033
  59. Quantum k-means algorithm based on trusted server in quantum cloud computing. Quantum Information Processing 20, 4 (apr 2021), 130. https://doi.org/10.1007/s11128-021-03071-7
  60. Grover algorithm-based quantum homomorphic encryption ciphertext retrieval scheme in quantum cloud computing. Quantum Inf. Process. 19, 3 (mar 2020). https://doi.org/10.1007/s11128-020-2603-0
  61. Constantin Gonzalez. 2021. Cloud based QC with Amazon Braket. Digitale Welt 5, 2 (apr 2021), 14–17. https://doi.org/10.1007/s42354-021-0330-z
  62. Google. 2024. Google Quantum AI. https://quantumai.google/. Accessed: 2024-03-08.
  63. A Serverless Cloud Integration For Quantum Computing. arXiv:2107.02007 [cs.ET]
  64. Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). Association for Computing Machinery, New York, NY, USA, 212–219. https://doi.org/10.1145/237814.237866
  65. Intel Quantum Simulator: a cloud-ready high-performance simulator of quantum circuits. Quantum Science and Technology 5, 3 (may 2020), 034007. https://doi.org/10.1088/2058-9565/ab8505
  66. Laszlo Gyongyosi and Sandor Imre. 2019. A Survey on quantum computing technology. Computer Science Review 31 (feb 2019), 51–71. https://doi.org/10.1016/j.cosrev.2018.11.002
  67. Laszlo Gyongyosi and Sandor Imre. 2021. Scalable distributed gate-model quantum computers. Scientific Reports 11, 1 (feb 2021). https://doi.org/10.1038/s41598-020-76728-5
  68. Crosstalk Attacks and Defence in a Shared Quantum Computing Environment. arXiv:2402.02753 [quant-ph]
  69. Forthcoming applications of quantum computing: peeking into the future. IET Quantum Communication 1, 2 (nov 2020), 35–41. https://doi.org/10.1049/iet-qtc.2020.0026
  70. Quantum computing for finance. Nature Reviews Physics 5, 8 (jul 2023), 450–465. https://doi.org/10.1038/s42254-023-00603-1
  71. QuantumPath : A quantum software development platform. Software: Practice and Experience 2021, December (dec 2021), 1–14. https://doi.org/10.1002/spe.3064
  72. A Framework for Demonstrating Practical Quantum Advantage: Racing Quantum against Classical Generative Models. arXiv:2303.15626 [quant-ph]
  73. Quantum secret sharing. Phys. Rev. A 59 (Mar 1999), 1829–1834. Issue 3. https://doi.org/10.1103/PhysRevA.59.1829
  74. Machine learning in the quantum realm: The state-of-the-art, challenges, and future vision. Expert Systems with Applications 194 (may 2022), 116512. https://doi.org/10.1016/j.eswa.2022.116512
  75. Barbora Hrda and Sascha Wessel. 2023. Confidential Quantum Computing. In Proceedings of the 18th International Conference on Availability, Reliability and Security (ARES 2023). ACM. https://doi.org/10.1145/3600160.3604982
  76. Experimental blind quantum computing for a classical client. Physical review letters 119, 5 (2017), 050503. https://doi.org/10.1103/PhysRevLett.119.050503
  77. Quantum random number cloud platform. npj Quantum Information 7, 1 (dec 2021), 107. https://doi.org/10.1038/s41534-021-00442-x
  78. IBM. 2023. IBM Quantum Computing Services. https://quantum-computing.ibm.com/
  79. IBM. 2024a. IBM Cloud. https://www.ibm.com/cloud. Accessed: 2024-03-08.
  80. IBM. 2024b. IBM Quantum Roadmap 2033. https://www.ibm.com/quantum/blog/quantum-roadmap-2033. Accessed: 2024-03-08.
  81. IBM Quantum. 2022. IBM Quantum Development Roadmap 2022. https://www.ibm.com/quantum/roadmap
  82. Quantum Safe Cloud Computing Using Hash-based Digital Signatures. In 2021 26th International Conference on Automation and Computing (ICAC). IEEE, Portsmouth, United Kingdom, 1–6. https://doi.org/10.23919/ICAC50006.2021.9594228
  83. Quantum Internet protocol stack: A comprehensive survey. Computer Networks 213 (aug 2022), 109092. https://doi.org/10.1016/j.comnet.2022.109092
  84. IonQ. 2022. IonQ Cloud Service. https://ionq.com/
  85. ScaffCC: a framework for compilation and analysis of quantum computing programs. In Proceedings of the 11th ACM Conference on Computing Frontiers. ACM, Cagliari Italy, 1–10. https://doi.org/10.1145/2597917.2597939
  86. Towards MLOps: A Framework and Maturity Model. In 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). 1–8. https://doi.org/10.1109/SEAA53835.2021.00050
  87. Stochastic Qubit Resource Allocation for Quantum Cloud Computing. (oct 2022). http://arxiv.org/abs/2210.12343
  88. Gregory D. Kahanamoku-Meyer. 2023. Forging quantum data: classically defeating an IQP-based quantum test. Quantum 7 (sep 2023), 1107. https://doi.org/10.22331/q-2023-09-11-1107
  89. Cloud computing in the quantum era. In 2019 IEEE Conference on Communications and Network Security (CNS), Vol. 2019-Janua. IEEE, 1–4. https://doi.org/10.1109/CNS44998.2019.8952589
  90. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 7671 (sep 2017), 242–246. https://doi.org/10.1038/nature23879
  91. A quantum-classical cloud platform optimized for variational hybrid algorithms. Quantum Science and Technology 5, 2 (2020), 0–13. https://doi.org/10.1088/2058-9565/ab7559
  92. Software architecture for quantum computing systems – A systematic review. Journal of Systems and Software 201 (2023), 111682. https://doi.org/10.1016/j.jss.2023.111682
  93. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 7965 (jun 2023), 500–505. https://doi.org/10.1038/s41586-023-06096-3
  94. The unconstrained binary quadratic programming problem: a survey. Journal of Combinatorial Optimization 28, 1 (apr 2014), 58–81. https://doi.org/10.1007/s10878-014-9734-0
  95. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews 6 (JUN 2019), Not available. https://doi.org/10.1063/1.5089550
  96. Machine Learning Operations (MLOps): Overview, Definition, and Architecture. IEEE Access 11 (2023), 31866–31879. https://doi.org/10.1109/ACCESS.2023.3262138
  97. A Comprehensive Overview of Quantum Internet: Architecture, Protocol and Challenges. In Quantum and Blockchain for Modern Computing Systems: Vision and Advancements. Vol. 133. Springer International Publishing, Cham, 223–247. https://doi.org/10.1007/978-3-031-04613-1_8
  98. Quantum true random number generation on IBM’s cloud platform. Journal of King Saud University - Computer and Information Sciences 34, 8 (sep 2022), 6453–6465. https://doi.org/10.1016/j.jksuci.2022.01.015
  99. Mark Lewis and Fred Glover. 2017. Quadratic unconstrained binary optimization problem preprocessing: Theory and empirical analysis. Networks 70, 2 (jun 2017), 79–97. https://doi.org/10.1002/net.21751
  100. Quantum in the Cloud: Application Potentials and Research Opportunities. In Proceedings of the 10th International Conference on Cloud Computing and Services Science. SCITEPRESS - Science and Technology Publications, 9–24. https://doi.org/10.5220/0009819800090024
  101. On the Co-Design of Quantum Software and Hardware. In Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communication (NANOCOM ’21). ACM. https://doi.org/10.1145/3477206.3477464
  102. Verifiable Quantum Cloud Computation Scheme Based on Blind Computation. IEEE Access 8 (2020), 56921–56926. https://doi.org/10.1109/ACCESS.2020.2982090
  103. Quantum random number generator using a cloud superconducting quantum computer based on source-independent protocol. Scientific Reports 11, 1 (dec 2021), 23873. https://doi.org/10.1038/s41598-021-03286-9
  104. Revisiting logic locking for reversible computing. In 2019 IEEE European Test Symposium (ETS). IEEE, 1–6. https://doi.org/10.1109/ETS.2019.8791550
  105. Claudia Linnhoff-Popien. 2020. PlanQK – Quantum Computing Meets Artificial Intelligence: How to make an ambitious idea reality. Digitale Welt 4, 2 (apr 2020), 28–35. https://doi.org/10.1007/s42354-020-0257-9
  106. Secure multiparty quantum computation with few qubits. Physical Review A 102, 2 (2020), 1–15. https://doi.org/10.1103/PhysRevA.102.022405
  107. Lei Liu and Xinglei Dou. 2021. QuCloud: A New Qubit Mapping Mechanism for Multi-programming Quantum Computing in Cloud Environment. In Proceedings of the 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). Seoul, Korea (South), 167–178. https://doi.org/10.1109/HPCA51647.2021.00024
  108. Lei Liu and Xinglei Dou. 2023. QuCloud+: A Holistic Qubit Mapping Scheme for Single/Multi-Programming on 2D/3D NISQ Quantum Computers. ACM Trans. Archit. Code Optim. (nov 2023). https://doi.org/10.1145/3631525
  109. A quantum-based database query scheme for privacy preservation in cloud environment. Security and Communication Networks 2019 (2019). https://doi.org/10.1155/2019/4923590
  110. A unitary weights based one-iteration quantum perceptron algorithm for non-ideal training sets. IEEE Access 7 (2019), 36854–36865. https://doi.org/10.1109/ACCESS.2019.2896316
  111. Improved deterministic N-to-one joint remote preparation of an arbitrary qubit via EPR pairs. International Journal of Theoretical Physics 54 (2015), 472–483. https://doi.org/10.1007/s10773-014-2241-3
  112. Multi-party Semi-quantum Key Agreement with Delegating Quantum Computation. International Journal of Theoretical Physics 56, 10 (jul 2017), 3164–3174. https://doi.org/10.1007/s10773-017-3484-6
  113. Quantum Relief algorithm. Quantum Information Processing 17 (Sep 2018), 1–15. https://doi.org/10.1007/s11128-018-2048-x
  114. Attacks and improvement of quantum sealed-bid auction with EPR pairs. Communications in Theoretical Physics 61, 6 (2014), 686. https://doi.org/10.1088/0253-6102/61/6/05
  115. Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Information Processing 15 (2016), 869–879. https://doi.org/10.1007/s11128-015-1202-y
  116. An Efficient and Secure Arbitrary N-Party Quantum Key Agreement Protocol Using Bell States. International Journal of Theoretical Physics 57, 1 (sep 2017), 195–207. https://doi.org/10.1007/s10773-017-3553-x
  117. Seng W. Loke. 2022. From Distributed Quantum Computing to Quantum Internet Computing: an Overview. http://arxiv.org/abs/2208.10127
  118. QEnclave-A practical solution for secure quantum cloud computing. npj Quantum Information 8, 1 (2022), 128. https://doi.org/10.1038/s41534-022-00612-5
  119. Digital quantum simulation of molecular dynamics and control. Physical Review Research 3, 2 (jun 2021), 023165. https://doi.org/10.1103/PhysRevResearch.3.023165
  120. Urmila Mahadev. 2018a. Classical Homomorphic Encryption for Quantum Circuits. (2018), 332–338. https://doi.org/10.1109/FOCS.2018.00039
  121. Urmila Mahadev. 2018b. Classical verification of quantum computations. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 259–267. https://doi.org/10.1109/FOCS.2018.00033
  122. A Holistic View on Resource Management in Serverless Computing Environments: Taxonomy and Future Directions. ACM Comput. Surv. 54, 11s, Article 222 (sep 2022), 36 pages. https://doi.org/10.1145/3510412
  123. A Leap among Quantum Computing and Quantum Neural Networks: A Survey. ACM Comput. Surv. 55, 5, Article 98 (dec 2022), 37 pages. https://doi.org/10.1145/3529756
  124. Quantum Key Distribution: A Networking Perspective. Comput. Surveys 53, 5 (2020). https://doi.org/10.1145/3402192
  125. Microsoft. 2023. Azure Quantum. https://azure.microsoft.com/en-us/services/quantum
  126. D.M. Miller and M.A. Thornton. 2006. QMDD: A Decision Diagram Structure for Reversible and Quantum Circuits. In 36th International Symposium on Multiple-Valued Logic (ISMVL’06). 30–30. https://doi.org/10.1109/ISMVL.2006.35
  127. Quantum service-oriented computing: current landscape and challenges. Software Quality Journal 0123456789 (2022). https://doi.org/10.1007/s11219-022-09589-y
  128. Dynamic Quantum Network: from Quantum Data Centre to Quantum Cloud Computing, In Optical Fiber Communication Conference (OFC) 2022. Optical Fiber Communication Conference (OFC) 2022, Th3D.1. https://doi.org/10.1364/OFC.2022.Th3D.1
  129. Optimal Stochastic Resource Allocation for Distributed Quantum Computing. (sep 2022). http://arxiv.org/abs/2210.02886
  130. iQuantum: A Case for Modeling and Simulation of Quantum Computing Environments. In 2023 IEEE International Conference on Quantum Software (QSW). IEEE Computer Society, Los Alamitos, CA, USA, 21–30. https://doi.org/10.1109/QSW59989.2023.00013
  131. iQuantum: A toolkit for modeling and simulation of quantum computing environments. Software: Practice and Experience (2024). https://doi.org/10.1002/spe.3331
  132. QFaaS: A Serverless Function-as-a-Service framework for Quantum computing. Future Generation Computer Systems 154 (May 2024), 281–300. https://doi.org/10.1016/j.future.2024.01.018
  133. Software for Massively Parallel Quantum Computing. http://arxiv.org/abs/2211.13355
  134. Michael A. Nielsen and Isaac L. Chuang. 2012. Quantum Computation and Quantum Information. Cambridge University Press. https://doi.org/10.1017/CBO9780511976667
  135. Siyuan Niu and Aida Todri-Sanial. 2022. How Parallel Circuit Execution Can Be Useful for NISQ Computing?. In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, Helsinki, Finland, 1065–1070. https://doi.org/10.23919/DATE54114.2022.9774512
  136. OCQ. 2024. OxfordQuantumCircuits. https://oxfordquantumcircuits.com/. Accessed: 2024-03-07.
  137. Simultaneous Execution of Quantum Circuits on Current and Near-Future NISQ Systems. IEEE Transactions on Quantum Engineering 3 (2022), 1–10. https://doi.org/10.1109/TQE.2022.3164716
  138. Scalable Quantum Simulation of Molecular Energies. Phys. Rev. X 6 (Jul 2016), 031007. Issue 3. https://doi.org/10.1103/PhysRevX.6.031007
  139. Wesley O’Quinn and Shiwen Mao. 2020. Quantum machine learning: Recent advances and outlook. IEEE Wireless Communications 27, 3 (jun 2020), 126–131. https://doi.org/10.1109/MWC.001.1900341
  140. Quantum computing for finance: Overview and prospects. Reviews in Physics 4 (nov 2019), 100028. https://doi.org/10.1016/j.revip.2019.100028
  141. Pasqal. 2024. Programmable Atomic Arrays - PASQAL. https://www.pasqal.com/. Accessed: 2024-03-07.
  142. The Concept of a Quantum Edge Simulator: Edge Computing and Sensing in the Quantum Era. Sensors 23, 1 (dec 2022), 115. https://doi.org/10.3390/s23010115
  143. RRNet: Towards ReLU-Reduced Neural Network for Two-party Computation Based Private Inference. (2023). arXiv:2302.02292
  144. A variational eigenvalue solver on a photonic quantum processor. Nature Communications 5, 1 (jul 2014). https://doi.org/10.1038/ncomms5213
  145. Kernel-as-a-Service: A Serverless Programming Model for Heterogeneous Hardware Accelerators. In Proceedings of the 24th International Middleware Conference (Bologna, Italy) (Middleware ’23). Association for Computing Machinery, New York, NY, USA, 192–206. https://doi.org/10.1145/3590140.3629115
  146. Quantum PUF for Security and Trust in Quantum Computing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 11 (JUN 2021), 333–342. https://doi.org/10.1109/jetcas.2021.3077024
  147. Christophe Piveteau and David Sutter. 2023. Circuit knitting with classical communication. IEEE Transactions on Information Theory (2023), 1–1. https://doi.org/10.1109/TIT.2023.3310797
  148. A single-atom electron spin qubit in silicon. Nature 489, 7417 (sep 2012), 541–545. https://doi.org/10.1038/nature11449
  149. Gabriel Popkin. 2017. Quantum computer simulates largest molecule yet, sparking hope of future drug discoveries. Science (SEP 2017). https://doi.org/10.1126/science.aap9503
  150. John Preskill. 2018. Quantum computing in the NISQ era and beyond. Quantum 2 (aug 2018), 79. https://doi.org/10.22331/q-2018-08-06-79
  151. QCI. [n. d.]. Dirac-3 - Quantum Computing Inc. https://quantumcomputinginc.com/offerings/quantum-computing/dirac-3. Accessed: 2024-03-20.
  152. Xia qin Fang and Run hua Shi. 2023. Cloud-assisted quantum primitive protocols and applications. Physica Scripta 98, 9 (aug 2023), 095114. https://doi.org/10.1088/1402-4896/acf171
  153. A Novel Quantum Stegonagraphy Based on Brown States. Computers, Materials & Continua 56, 1 (2018). https://doi.org/10.3970/cmc.2018.02215
  154. Quantinuum. 2022. Quantinuum Cloud Service. https://www.quantinuum.com/
  155. QuEra. 2024. Quantum Computing with Neutral Atoms - QuEra. https://www.quera.com/. Accessed: 2024-03-07.
  156. Quantum Computing in the Cloud: Analyzing job and machine characteristics. In 2021 IEEE International Symposium on Workload Characterization (IISWC). IEEE Computer Society, Los Alamitos, CA, USA, 39–50. https://doi.org/10.1109/IISWC53511.2021.00015
  157. Adaptive job and resource management for the growing quantum cloud. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, Broomfield, CO, USA, 301–312. https://doi.org/10.1109/QCE52317.2021.00047
  158. Salonik Resch and Ulya R. Karpuzcu. 2021. Benchmarking Quantum Computers and the Impact of Quantum Noise. ACM Comput. Surv. 54, 7, Article 142 (jul 2021), 35 pages. https://doi.org/10.1145/3464420
  159. Chameleon: A hybrid secure computation framework for machine learning applications. In Proceedings of the 2018 on Asia conference on computer and communications security. 707–721. https://doi.org/10.1145/3196494.3196522
  160. A universal qudit quantum processor with trapped ions. Nature Physics 18, 9 (jul 2022), 1053–1057. https://doi.org/10.1038/s41567-022-01658-0
  161. Trials and Tribulations of Developing Hybrid Quantum-Classical Microservices Systems. arXiv:2105.04421 [cs.SE]
  162. Quantum computing hardware in the cloud: Should a computational chemist care? International Journal of Quantum Chemistry 121, 14 (may 2021). https://doi.org/10.1002/qua.26688
  163. A Survey and Tutorial on Security and Resilience of Quantum Computing. Proceedings of the European Test Workshop 2021-May (2021). https://doi.org/10.1109/ETS50041.2021.9465397
  164. Split Compilation for Security of Quantum Circuits. In 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). 1–7. https://doi.org/10.1109/ICCAD51958.2021.9643478
  165. The NISQ Analyzer: Automating the Selection of Quantum Computers for Quantum Algorithms. In Communications in Computer and Information Science. Vol. 1310. Springer Science and Business Media Deutschland GmbH, 66–85. https://doi.org/10.1007/978-3-030-64846-6_5
  166. Seungchan Seo and Joonwoo Bae. 2022. Measurement Crosstalk Errors in Cloud-Based Quantum Computing. IEEE Internet Computing 26, 1 (2022), 26–33. https://doi.org/10.1109/MIC.2021.3133437
  167. Quantum Software Components and Platforms: Overview and Quality Assessment. Comput. Surveys (2022). https://doi.org/10.1145/3548679
  168. Serverless Computing: A Survey of Opportunities, Challenges, and Applications. Comput. Surveys (2022), 1–31. https://doi.org/10.1145/3510611
  169. From distributed machine learning to federated learning: In the view of data privacy and security. Concurrency and Computation: Practice and Experience 34, 16 (2022), e6002. https://doi.org/10.1002/cpe.6002
  170. Dan Shepherd and Michael J. Bremner. 2009. Temporally unstructured quantum computation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, 2105 (feb 2009), 1413–1439. https://doi.org/10.1098/rspa.2008.0443
  171. Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (oct 1997), 1484–1509. https://doi.org/10.1137/S0097539795293172
  172. Ashish Singh and Kakali Chatterjee. 2017. Cloud security issues and challenges: A survey. Journal of Network and Computer Applications 79 (Feb 2017), 88–115. https://doi.org/10.1016/j.jnca.2016.11.027
  173. Quantum Internet–Applications, Functionalities, Enabling Technologies, Challenges, and Research Directions. IEEE Communications Surveys & Tutorials 23, 4 (2021), 2218–2247. https://doi.org/10.1109/COMST.2021.3109944
  174. Harpreet Singh and Abha Sachdev. 2014. The Quantum way of Cloud Computing. In 2014 International Conference on Reliability Optimization and Information Technology (ICROIT). IEEE, Faridabad, Haryana, India, 397–400. https://doi.org/10.1109/ICROIT.2014.6798362
  175. Sergei Slussarenko and Geoff J. Pryde. 2019. Photonic quantum information processing: A concise review. Applied Physics Reviews 6, 4 (oct 2019). https://doi.org/10.1063/1.5115814
  176. Haryono Soeparno and Anzaludin Samsinga Perbangsa. 2021. Cloud Quantum Computing Concept and Development: A Systematic Literature Review. Procedia Computer Science 179, 2019 (2021), 944–954. https://doi.org/10.1016/j.procs.2021.01.084
  177. Strangeworks. 2022. Strangeworks Quantum Computing Platform. https://app.quantumcomputing.com/
  178. QuRE: The quantum resource estimator toolbox. In 2013 IEEE 31st International Conference on Computer Design, ICCD 2013. IEEE Computer Society, 419–426. https://doi.org/10.1109/ICCD.2013.6657074
  179. D-Wave System. 2022. D-Wave Systems Leap - Quantum Computing Service. https://www.dwavesys.com/solutions-and-products/cloud-platform/
  180. Perfect quantum teleportation via Bell states. Comput. Mater. Continua 57, 3 (2018), 495–503. https://doi.org/10.32604/cmc.2018.03772
  181. CutQC: using small Quantum computers for large Quantum circuit evaluations. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. Virtual USA, 473–486. https://doi.org/10.1145/3445814.3446758
  182. Swamit S Tannu and Moinuddin Qureshi. 2019. Ensemble of diverse mappings: Improving reliability of quantum computers by orchestrating dissimilar mistakes. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 253–265. https://doi.org/10.1145/3352460.3358257
  183. Recent Advances for Quantum Neural Networks in Generative Learning. http://arxiv.org/abs/2206.03066
  184. Suryansh Upadhyay and Swaroop Ghosh. 2022. Robust and Secure Hybrid Quantum-Classical Computation on Untrusted Cloud-Based Quantum Hardware. In Proceedings of the 11th International Workshop on Hardware and Architectural Support for Security and Privacy (HASP ’22). ACM. https://doi.org/10.1145/3569562.3569569
  185. Trustworthy Computing using Untrusted Cloud-Based Quantum Hardware. arXiv:2305.01826 [quant-ph]
  186. Coherent control of electron spin qubits in silicon using a global field. npj Quantum Information 8, 1 (nov 2022). https://doi.org/10.1038/s41534-022-00645-w
  187. LIMDD: A Decision Diagram for Simulation of Quantum Computing Including Stabilizer States. Quantum 7 (sep 2023), 1108. https://doi.org/10.22331/q-2023-09-11-1108
  188. De Voorhoede. 2024. Quantum Inspire. https://www.quantum-inspire.com/. Accessed: 2024-03-08.
  189. Quality, Speed, and Scale: three key attributes to measure the performance of near-term quantum computers. http://arxiv.org/abs/2110.14108 arXiv:2110.14108.
  190. Petros Wallden and Elham Kashefi. 2019. Cyber security in the quantum era. Commun. ACM 62, 4 (mar 2019), 120–120. https://doi.org/10.1145/3241037
  191. QuMoS: A Framework for Preserving Security of Quantum Machine Learning Model. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE Computer Society, Los Alamitos, CA, USA, 1089–1097. https://doi.org/10.1109/QCE57702.2023.00123
  192. Automated Quantum Hardware Selection for Quantum Workflows. Electronics 10, 8 (apr 2021), 984. https://doi.org/10.3390/electronics10080984
  193. Integrating quantum computing into workflow modeling and execution. In 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC) (Leicester, United Kingdom). IEEE. https://doi.org/10.1109/UCC48980.2020.00046
  194. Quantum internet: A vision for the road ahead. Science 362, 6412 (2018). https://doi.org/10.1126/science.aam9288
  195. An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chinese Physics B 18, 10 (sep 2009), 4105–4109. https://doi.org/10.1088/1674-1056/18/10/007
  196. Benchmarking adversarially robust quantum machine learning at scale. Physical Review Research 5, 2 (jun 2023), 023186. https://doi.org/10.1103/PhysRevResearch.5.023186
  197. Towards quantum enhanced adversarial robustness in machine learning. Nature Machine Intelligence 5, 6 (may 2023), 581–589. https://doi.org/10.1038/s42256-023-00661-1
  198. Xanadu. 2024. Xanadu Quantum Cloud Service. https://www.xanadu.ai/. Accessed: 2024-03-22.
  199. NMRCloudQ: a quantum cloud experience on a nuclear magnetic resonance quantum computer. Science Bulletin 63, 1 (jan 2018), 17–23. https://doi.org/10.1016/j.scib.2017.12.022
  200. A Survey of Important Issues in Quantum Computing and Communications. IEEE Communications Surveys & Tutorials 25, 2 (2023), 1059–1094. https://doi.org/10.1109/COMST.2023.3254481
  201. Man-Hong Yung and Bin Cheng. 2022. Anti-Forging Quantum Data: Cryptographic Verification of Quantum Computational Power. arXiv:2005.01510 [quant-ph]
  202. FaaSten your decisions: A classification framework and technology review of function-as-a-Service platforms. Journal of Systems and Software 175 (may 2021), 110906. https://doi.org/10.1016/j.jss.2021.110906
  203. From Serverful to Serverless: A Spectrum of Patterns for Hosting Application Components. In Proceedings of the 11th International Conference on Cloud Computing and Services Science (CLOSER 2021). SciTePress, 268–279. https://doi.org/10.5220/0010481002680279
  204. Research on Task Scheduling Scheme for Quantum Computing Cloud Platform. In Proceedings of the 2022 6th International Conference on Cloud and Big Data Computing (Birmingham, United Kingdom) (ICCBDC ’22). Association for Computing Machinery, New York, NY, USA, 7–11. https://doi.org/10.1145/3555962.3555964
  205. Yao Zhang and Qiang Ni. 2020. Recent advances in quantum machine learning. Quantum Engineering 2, 1 (mar 2020). https://doi.org/10.1002/que2.34
  206. Analysis and Improvement of an Efficient Controlled Quantum Secure Direct Communication and Authentication Protocol. Computers, Materials & Continua 57, 3 (2018). https://doi.org/10.32604/cmc.2018.03706
  207. Quantum computing’s potential for drug discovery: Early stage industry dynamics. Drug Discovery Today 26, 7 (jul 2021), 1680–1688. https://doi.org/10.1016/j.drudis.2021.06.003
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com