Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Batch Array Codes (2404.11409v1)

Published 17 Apr 2024 in cs.IT, math.CO, and math.IT

Abstract: Batch codes are a type of codes specifically designed for coded distributed storage systems and private information retrieval protocols. These codes have got much attention in recent years due to their ability to enable efficient and secure storage in distributed systems. In this paper, we study an array code version of the batch codes, which is called the \emph{batch array code} (BAC). Under the setting of BAC, each node stores a bucket containing multiple code symbols and responds with a locally computed linear combination of the symbols in its bucket during the recovery of a requested symbol. We demonstrate that BACs can support the same type of requests as the original batch codes but with reduced redundancy. Specifically, we establish information theoretic lower bounds on the code lengths and provide several code constructions that confirm the tightness of the lower bounds for certain parameter regimes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their applications,” in Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, ser. STOC ’04.   New York, NY, USA: Association for Computing Machinery, 2004, pp. 262–271.
  2. A. S. Rawat, Z. Song, A. G. Dimakis, and A. Gál, “Batch codes through dense graphs without short cycles,” IEEE Trans. Inf. Theory, vol. 62, no. 4, pp. 1592–1604, 2016.
  3. I. Tamo and A. Barg, “A family of optimal locally recoverable codes,” IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676, 2014.
  4. A. Wang and Z. Zhang, “Repair locality with multiple erasure tolerance,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6979–6987, 2014.
  5. P. Huang, E. Yaakobi, H. Uchikawa, and P. H. Siegel, “Linear locally repairable codes with availability,” in 2015 IEEE International Symposium on Information Theory (ISIT), 2015, pp. 1871–1875.
  6. A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, “Locality and availability in distributed storage,” IEEE Trans. Inf. Theory, vol. 62, no. 8, pp. 4481–4493, 2016.
  7. I. Tamo, A. Barg, and A. Frolov, “Bounds on the parameters of locally recoverable codes,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3070–3083, 2016.
  8. H. Cai, Y. Miao, M. Schwartz, and X. Tang, “On optimal locally repairable codes with multiple disjoint repair sets,” IEEE Trans. Inf. Theory, vol. 66, no. 4, pp. 2402–2416, 2020.
  9. S. Angel, H. Chen, K. Laine, and S. Setty, “PIR with compressed queries and amortized query processing,” in 2018 IEEE Symposium on Security and Privacy (SP), 2018, pp. 962–979.
  10. M. Aktaş, G. Joshi, S. Kadhe, F. Kazemi, and E. Soljanin, “Service rate region: A new aspect of coded distributed system design,” IEEE Trans. Inf. Theory, vol. 67, no. 12, pp. 7940–7963, 2021.
  11. M. B. Paterson, D. R. Stinson, and R. Wei, “Combinatorial batch codes,” Adv. Math. Commun., vol. 3, no. 1, pp. 13–27, 2009.
  12. S. Bhattacharya, S. Ruj, and B. K. Roy, “Combinatorial batch codes: A lower bound and optimal constructions,” Adv. Math. Commun., vol. 6, no. 2, pp. 165–174, 2012.
  13. N. Silberstein and A. Gál, “Optimal combinatorial batch codes based on block designs,” Des. Codes Cryptogr., vol. 78, no. 2, pp. 409–424, 2016.
  14. C. Shangguan and I. Tamo, “Sparse hypergraphs with applications to coding theory,” SIAM J. Discret. Math., vol. 34, no. 3, pp. 1493–1504, 2020.
  15. Y. M. Chee, H. M. Kiah, and H. Zhang, “Lower bounds for total storage of multiset combinatorial batch codes using linear programming,” IEEE Trans. Inf. Theory, vol. 67, no. 1, pp. 255–267, 2021.
  16. Z. Wang, O. Shaked, Y. Cassuto, and J. Bruck, “Codes for network switches,” in 2013 IEEE International Symposium on Information Theory, 2013, pp. 1057–1061.
  17. Z. Wang, H. M. Kiah, and Y. Cassuto, “Optimal binary switch codes with small query size,” in 2015 IEEE International Symposium on Information Theory (ISIT), 2015, pp. 636–640.
  18. Y. M. Chee, F. Gao, S. T. Ho Teo, and H. Zhang, “Combinatorial systematic switch codes,” in 2015 IEEE International Symposium on Information Theory (ISIT), 2015, pp. 241–245.
  19. S. Buzaglo, Y. Cassuto, P. H. Siegel, and E. Yaakobi, “Consecutive switch codes,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2485–2498, 2018.
  20. A. Vardy and E. Yaakobi, “Constructions of batch codes with near-optimal redundancy,” in 2016 IEEE International Symposium on Information Theory (ISIT), 2016, pp. 1197–1201.
  21. H. Asi and E. Yaakobi, “Nearly optimal constructions of PIR and batch codes,” IEEE Trans. Inf. Theory, vol. 65, no. 2, pp. 947–964, 2019.
  22. R. Polyanskaya, N. Polyanskii, and I. Vorobyev, “Binary batch codes with improved redundancy,” IEEE Trans. Inf. Theory, vol. 66, no. 12, pp. 7360–7370, 2020.
  23. R. Li and M. Wootters, “Lifted multiplicity codes and the disjoint repair group property,” IEEE Trans. Inf. Theory, vol. 67, no. 2, pp. 716–725, 2021.
  24. L. Holzbaur, R. Polyanskaya, N. Polyanskii, I. Vorobyev, and E. Yaakobi, “Lifted reed-solomon codes and lifted multiplicity codes,” IEEE Trans. Inf. Theory, vol. 67, no. 12, pp. 8051–8069, 2021.
  25. X. Kong and O. Elishco, “Bounds and constructions for generalized batch codes,” CoRR, vol. abs/2309.06806, 2023.
  26. S. Rao, A. Vardy, and M. Wootters, “Lower bounds on the redundancy of linear codes with multiple disjoint repair groups,” in IEEE International Symposium on Information Theory, ISIT 2022, Espoo, Finland, June 26-July 1, 2022.   IEEE, 2022.
  27. R. Li and M. Wootters, “Improved batch code lower bounds,” in 2022 IEEE International Symposium on Information Theory (ISIT), 2022, pp. 1596–1599.
  28. A. Fazeli, A. Vardy, and E. Yaakobi, “PIR with low storage overhead: Coding instead of replication,” CoRR, vol. abs/1505.06241, 2015.
  29. H. Lin and E. Rosnes, “Lengthening and extending binary private information retrieval codes,” CoRR, vol. abs/1707.03495, 2017.
  30. M. Vajha, V. Ramkumar, and P. Vijay Kumar, “Binary, shortened projective reed muller codes for coded private information retrieval,” in 2017 IEEE International Symposium on Information Theory (ISIT), 2017, pp. 2648–2652.
  31. S. Kurz and E. Yaakobi, “PIR codes with short block length,” Des. Codes Cryptogr., vol. 89, no. 3, pp. 559–587, 2021.
  32. A.-E. Riet, V. Skachek, and E. K. Thomas, “Batch codes for asynchronous recovery of data,” IEEE Trans. Inf. Theory, vol. 68, no. 3, pp. 1545–1559, 2022.
  33. Y. Zhang, T. Etzion, and E. Yaakobi, “Bounds on the length of functional PIR and batch codes,” IEEE Trans. Inf. Theory, vol. 66, no. 8, pp. 4917–4934, 2020.
  34. L. Yohananov and E. Yaakobi, “Almost optimal construction of functional batch codes using hadamard codes,” CoRR, vol. abs/2101.06722, 2021.
  35. M. Nassar and E. Yaakobi, “Array codes for functional PIR and batch codes,” IEEE Trans. Inf. Theory, vol. 68, no. 2, pp. 839–862, 2022.
  36. S. R. Blackburn and T. Etzion, “PIR array codes with optimal virtual server rate,” IEEE Trans. Inf. Theory, vol. 65, no. 10, pp. 6136–6145, 2019.
  37. Y. Zhang, X. Wang, H. Wei, and G. Ge, “On private information retrieval array codes,” IEEE Trans. Inf. Theory, vol. 65, no. 9, pp. 5565–5573, 2019.
  38. Y. M. Chee, H. M. Kiah, E. Yaakobi, and H. Zhang, “A generalization of the blackburn-etzion construction for private information retrieval array codes,” in 2019 IEEE International Symposium on Information Theory (ISIT), 2019, pp. 1062–1066.
  39. C. Wang and Y. Zhang, “PIR array codes: the optimality of blackburn-etzion construction,” in 2023 IEEE International Symposium on Information Theory (ISIT), 2023, pp. 1342–1347.
  40. P. Hall, “On representatives of subsets,” Journal of The London Mathematical Society-second Series, pp. 26–30, 1935.
  41. H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations,” The Annals of Mathematical Statistics, vol. 23, no. 4, pp. 493–507, 1952.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com