Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding $d$-Cuts in Graphs of Bounded Diameter, Graphs of Bounded Radius and $H$-Free Graphs (2404.11389v3)

Published 17 Apr 2024 in math.CO, cs.CC, cs.DM, and cs.DS

Abstract: The $d$-Cut problem is to decide if a graph has an edge cut such that each vertex has at most $d$ neighbours at the opposite side of the cut. If $d=1$, we obtain the intensively studied Matching Cut problem. The $d$-Cut problem has been studied as well, but a systematic study for special graph classes was lacking. We initiate such a study and consider classes of bounded diameter, bounded radius and $H$-free graphs. We prove that for all $d\geq 2$, $d$-Cut is polynomial-time solvable for graphs of diameter $2$, $(P_3+P_4)$-free graphs and $P_5$-free graphs. These results extend known results for $d=1$. However, we also prove several NP-hardness results for $d$-Cut that contrast known polynomial-time results for $d=1$. Our results lead to full dichotomies for bounded diameter and bounded radius and to almost-complete dichotomies for $H$-free graphs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.