Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Global topological synchronization of weighted simplicial complexes (2404.11337v1)

Published 17 Apr 2024 in cond-mat.dis-nn, cond-mat.stat-mech, nlin.AO, and physics.soc-ph

Abstract: Higher-order networks are able to capture the many-body interactions present in complex systems and to unveil new fundamental phenomena revealing the rich interplay between topology, geometry, and dynamics. Simplicial complexes are higher-order networks that encode higher-order topology and dynamics of complex systems. Specifically, simplicial complexes can sustain topological signals, i.e., dynamical variables not only defined on nodes of the network but also on their edges, triangles, and so on. Topological signals can undergo collective phenomena such as synchronization, however, only some higher-order network topologies can sustain global synchronization of topological signals. Here we consider global topological synchronization of topological signals on weighted simplicial complexes. We demonstrate that topological signals can globally synchronize on weighted simplicial complexes, even if they are odd-dimensional, e.g., edge signals, overcoming thus a limitation of the unweighted case. These results thus demonstrate that weighted simplicial complexes are more advantageous for observing these collective phenomena than their unweighted counterpart. In particular, we present two weighted simplicial complexes the Weighted Triangulated Torus and the Weighted Waffle. We completely characterize their higher-order spectral properties and we demonstrate that, under suitable conditions on their weights, they can sustain global synchronization of edge signals. Our results are interpreted geometrically by showing, among the other results, that in some cases edge weights can be associated with the lengths of the sides of curved simplices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. G. Bianconi, Higher-order networks: An introduction to simplicial complexes (Cambridge University Press, 2021).
  2. V. Salnikov, D. Cassese, and R. Lambiotte, Simplicial complexes and complex systems, European Journal of Physics 40, 014001 (2018).
  3. A. Patania, G. Petri, and F. Vaccarino, The shape of collaborations, EPJ Data Science 6, 1 (2017a).
  4. A. Patania, F. Vaccarino, and G. Petri, Topological analysis of data, EPJ Data Science 6, 1 (2017b).
  5. S. Majhi, M. Perc, and D. Ghosh, Dynamics on higher-order networks: A review, Journal of the Royal Society Interface 19, 20220043 (2022).
  6. G. Bianconi, Quantum entropy couples matter with geometry, arXiv preprint arXiv:2404.08556  (2024).
  7. Y. Zhou, B. H. Smith, and T. O. Sharpee, Hyperbolic geometry of the olfactory space, Science advances 4, eaaq1458 (2018).
  8. G. Ferraz de Arruda, M. Tizzani, and Y. Moreno, Phase transitions and stability of dynamical processes on hypergraphs, Communications Physics 4, 24 (2021).
  9. H. Sun and G. Bianconi, Higher-order percolation processes on multiplex hypergraphs, Physical Review E 104, 034306 (2021).
  10. G. Bianconi and S. N. Dorogovtsev, The theory of percolation on hypergraphs, arXiv preprint arXiv:2305.12297  (2023a).
  11. G. Bianconi and S. N. Dorogovtsev, The nature of hypergraph k𝑘kitalic_k-core percolation problems, arXiv preprint arXiv:2307.15346  (2023b).
  12. P. S. Skardal and A. Arenas, Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes, Physical Review Letters 122, 248301 (2019).
  13. P. S. Skardal and A. Arenas, Memory selection and information switching in oscillator networks with higher-order interactions, Journal of Physics: Complexity 2, 015003 (2020).
  14. M. Lucas, G. Cencetti, and F. Battiston, Multiorder Laplacian for synchronization in higher-order networks, Physical Review Research 2, 033410 (2020).
  15. T. Carletti, D. Fanelli, and S. Nicoletti, Dynamical systems on hypergraphs, Journal of Physics: Complexity 1, 035006 (2020b).
  16. R. Mulas, C. Kuehn, and J. Jost, Coupled dynamics on hypergraphs: Master stability of steady states and synchronization, Physical Review E 101, 062313 (2020).
  17. Y. Tang, D. Shi, and L. Lü, Optimizing higher-order network topology for synchronization of coupled phase oscillators, Communications Physics 5, 96 (2022).
  18. A. D. Kachhvah and S. Jalan, Hebbian plasticity rules abrupt desynchronization in pure simplicial complexes, New Journal of Physics 24, 052002 (2022).
  19. A. P. Millán, J. J. Torres, and G. Bianconi, Explosive higher-order Kuramoto dynamics on simplicial complexes, Physical Review Letters 124, 218301 (2020).
  20. T. Carletti, L. Giambagli, and G. Bianconi, Global topological synchronization on simplicial and cell complexes, Physical Review Letters 130, 187401 (2023).
  21. L. Calmon, M. T. Schaub, and G. Bianconi, Dirac signal processing of higher-order topological signals, New J. Phys. 25, 093013 (2023a).
  22. J. J. Torres and G. Bianconi, Simplicial complexes: higher-order spectral dimension and dynamics, Journal of Physics: Complexity 1, 015002 (2020).
  23. S. Krishnagopal and G. Bianconi, Topology and dynamics of higher-order multiplex networks, Chaos, Solitons & Fractals 177, 114296 (2023).
  24. S. Barbarossa and S. Sardellitti, Topological signal processing over simplicial complexes, IEEE Transactions on Signal Processing 68, 2992 (2020).
  25. L. Calmon, S. Krishnagopal, and G. Bianconi, Local Dirac synchronization on networks, Chaos: An Interdisciplinary Journal of Nonlinear Science 33, 033117 (2023b).
  26. E. Katifori, G. J. Szöllősi, and M. O. Magnasco, Damage and fluctuations induce loops in optimal transport networks, Physical Review Letters 104, 048704 (2010).
  27. G. Gounaris, M. R. Garcia, and E. Katifori, Distribution efficiency and structure of complex networks, arXiv preprint arXiv:2111.04657  (2021).
  28. G. Gounaris and E. Katifori, A Braess’ paradox analog in physical networks of optimal exploration, arXiv preprint arXiv:2303.02146  (2023).
  29. J. Faskowitz, R. F. Betzel, and O. Sporns, Edges in brain networks: Contributions to models of structure and function, Network Neuroscience 6, 1 (2022).
  30. L. DeVille, Consensus on simplicial complexes: Results on stability and synchronization, Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 023137 (2021).
  31. H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems, Progress of Theoretical Physics 69, 32 (1983).
  32. L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Physical Review Letters 80, 2109 (1998).
  33. R. M. D’Souza, M. di Bernardo, and Y.-Y. Liu, Controlling complex networks with complex nodes, Nature Reviews Physics 5, 250 (2023).
  34. D. Wilson and J. Moehlis, Optimal chaotic desynchronization for neural populations, SIAM Journal on Applied Dynamical Systems 13, 276 (2014).
  35. C. H. Totz, S. Olmi, and E. Schöll, Control of synchronization in two-layer power grids, Physical Review E 102, 022311 (2020).
  36. C. Zhou and J. Kurths, Dynamical weights and enhanced synchronization in adaptive complex networks, Physical review letters 96, 164102 (2006).
  37. R. Berner, S. Yanchuk, and E. Schöll, What adaptive neuronal networks teach us about power grids, Physical Review E 103, 042315 (2021).
  38. M. Asllani, P. Expert, and T. Carletti, A minimally invasive neurostimulation method for controlling abnormal synchronisation in the neuronal activity, PLoS computational biology 14, e1006296 (2018).
  39. B. Eckmann, Harmonische funktionen und randwertaufgaben in einem komplex, Commentarii Mathematici Helvetici 17, 240 (1944).
  40. D. Horak and J. Jost, Spectra of combinatorial Laplace operators on simplicial complexes, Advances in Mathematics 244, 303 (2013).
  41. H. Nakao, Complex ginzburg-landau equation on networks and its non-uniform dynamics, The European Physical Journal Special Topics 223, 2411 (2014).
  42. Y. Kuramoto and H. Nakao, On the concept of dynamical reduction: the case of coupled oscillators, Philosophical Transactions of the Royal Society A 377, 20190041 (2019).
  43. M. Reitz and G. Bianconi, The higher-order spectrum of simplicial complexes: a renormalization group approach, Journal of Physics A: Mathematical and Theoretical 53, 295001 (2020).
  44. N. W. Ashcroft and N. D. Mermin, Solid state physics (Saunders College Publishing, 1976).
  45. A. J. Leggett, Lecture 5: Graphene: Electronic band structure and dirac fermions, Physics 769. Selected topics in condensed matter physics  (2010).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com