Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach (2404.11253v1)
Abstract: Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems using parameterized quantum circuits (PQCs). The design of these circuits influences the ability of the algorithm to efficiently explore the solution space and converge to more optimal solutions. Choosing an appropriate circuit topology, gate set, and parameterization scheme is determinant to achieve good performance. In addition, it is not only problem-dependent, but the quantum hardware used also has a significant impact on the results. Therefore, we present BPQCO, a Bayesian Optimization-based strategy to search for optimal PQCs adapted to the problem to be solved and to the characteristics and limitations of the chosen quantum hardware. To this end, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems (a synthetic dataset and the well-known Iris dataset), focusing on the design of the circuit ansatz. In addition, we study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers. To mitigate the effect of noise, two alternative optimization strategies based on the characteristics of the quantum system are proposed. The results obtained confirm the relevance of the presented approach and allow its adoption in further work based on the use of PQCs.
- The deep learning revolution. In Deep Learning: Foundations and Concepts, pages 1–22. Springer, 2023. doi:https://doi.org/10.1007/978-3-031-45468-4_1.
- Quantum machine learning. Nature, 549(7671):195–202, 2017. doi:https://doi.org/10.1038/nature23474.
- An introduction to quantum machine learning. Contemporary Physics, 56(2):172–185, 2015. doi:10.1080/00107514.2014.964942.
- Quantum computation and quantum information. Cambridge University Press, 2010.
- John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, aug 2018. ISSN 2521-327X. doi:10.22331/q-2018-08-06-79.
- A survey on quantum machine learning: Current trends, challenges, opportunities, and the road ahead. arXiv preprint arXiv:2310.10315, 2023. doi:https://doi.org/10.48550/arXiv.2310.10315.
- A Practical Guide to Quantum Machine Learning and Quantum Optimization: Hands-on Approach to Modern Quantum Algorithms. Packt Publishing Ltd, 2023.
- Quantum support vector machine for big data classification. Phys. Rev. Lett., 113:130503, Sep 2014. doi:10.1103/PhysRevLett.113.130503.
- Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Machine Intelligence, 2(1):2, 2020. doi:https://doi.org/10.1007/s42484-020-00012-y.
- A tutorial on quantum convolutional neural networks (qcnn). In 2020 International Conference on Information and Communication Technology Convergence (ICTC), pages 236–239, 2020. doi:10.1109/ICTC49870.2020.9289439.
- Learning temporal data with a variational quantum recurrent neural network. Phys. Rev. A, 103:052414, May 2021. doi:10.1103/PhysRevA.103.052414.
- Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies, 2(12):1900070, 2019. doi:https://doi.org/10.1002/qute.201900070.
- Hybrid quantum-classical algorithms and quantum error mitigation. Journal of the Physical Society of Japan, 90(3):032001, 2021. doi:10.7566/JPSJ.90.032001.
- Parameterized quantum circuits as machine learning models. Quantum Science and Technology, 4(4):043001, nov 2019. doi:10.1088/2058-9565/ab4eb5.
- Hybrid classical-quantum autoencoder for anomaly detection. Quantum Machine Intelligence, 4(2):27, 2022. doi:https://doi.org/10.1007/s42484-022-00075-z.
- Quantum long short-term memory. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8622–8626, 2022. doi:10.1109/ICASSP43922.2022.9747369.
- Variational quantum classifier for binary classification: Real vs synthetic dataset. IEEE Access, 10:3705–3715, 2022. doi:10.1109/ACCESS.2021.3139323.
- Hybrid quantum resnet for car classification and its hyperparameter optimization. Quantum Machine Intelligence, 5(2):38, 2023. doi:https://doi.org/10.1007/s42484-023-00123-2.
- Deep q-learning with hybrid quantum neural network on solving maze problems. Quantum Machine Intelligence, 6(1):2, 2024. doi:https://doi.org/10.1007/s42484-023-00137-w.
- Unitary 2-designs from random X- and Z-diagonal unitaries. Journal of Mathematical Physics, 58(5):052203, 05 2017. ISSN 0022-2488. doi:10.1063/1.4983266.
- Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability. Quantum Machine Intelligence, 3:1–19, 2021. doi:https://doi.org/10.1007/s42484-021-00038-w.
- On the applicability of quantum machine learning. Entropy, 25(7), 2023. ISSN 1099-4300. doi:10.3390/e25070992.
- Autoqml: Automatic generation and training of robust quantum-inspired classifiers by using evolutionary algorithms on grayscale images. Expert Systems with Applications, 244:122984, 2024. ISSN 0957-4174. doi:https://doi.org/10.1016/j.eswa.2023.122984.
- Quantum circuit design search. Quantum Machine Intelligence, 3(2):25, 2021. ISSN 2524-4906, 2524-4914. doi:10.1007/s42484-021-00051-z.
- Quantum circuit architecture search for variational quantum algorithms. npj Quantum Information, 8(1):62, 2022. doi:https://doi.org/10.1038/s41534-022-00570-y.
- The effects of quantum hardware properties on the performances of variational quantum learning algorithms. Quantum Machine Intelligence, 6(1):9, 2024. doi:https://doi.org/10.1007/s42484-024-00144-5.
- Quantum machine learning in feature hilbert spaces. Physical Review Letters, 122(4), feb 2019. doi:10.1103/physrevlett.122.040504.
- Expanding data encoding patterns for quantum algorithms. In 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C), pages 95–101, 2021. doi:10.1109/ICSA-C52384.2021.00025.
- Data re-uploading for a universal quantum classifier. Quantum, 4:226, February 2020. ISSN 2521-327X. doi:10.22331/q-2020-02-06-226.
- Autoqml: Automated quantum machine learning for wi-fi integrated sensing and communications. In 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM), pages 360–364, 2022. doi:10.1109/SAM53842.2022.9827846.
- Algorithms for hyper-parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.
- R. A. Fisher. Iris. UCI Machine Learning Repository, 1988. URL https://doi.org/10.24432/C56C76.
- M. J. D. Powell. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation, pages 51–67. Springer Netherlands, Dordrecht, 1994. ISBN 978-94-015-8330-5. doi:10.1007/978-94-015-8330-5_4.
- Multiobjective tree-structured parzen estimator. Journal of Artificial Intelligence Research, 73:1209–1250, 2022. doi:https://doi.org/10.1613/jair.1.13188.
- Shlomo S Sawilowsky. New effect size rules of thumb. Journal of modern applied statistical methods, 8(2):26, 2009. doi:https://doi.org/10.22237/jmasm/1257035100.
- Continuous-variable quantum neural networks. Phys. Rev. Res., 1:033063, Oct 2019. doi:10.1103/PhysRevResearch.1.033063.
- Quantum optimization methods for satellite mission planning. arXiv preprint arXiv:2404.05516 [quant-ph], 2024. doi:https://doi.org/10.48550/arXiv.2404.05516.