Polarization phenomenon in heavy-ion collisions (2404.11042v1)
Abstract: The strongly interacting system created in ultrarelativistic nuclear collisions behaves almost as an ideal fluid with rich patterns of the velocity field exhibiting strong vortical structure. Vorticity of the fluid, via spin-orbit coupling, leads to particle spin polarization. Due to the finite orbital momentum of the system, the polarization on average is not zero; it depends on the particle momenta reflecting the spatial variation of the local vorticity. In the last few years, this field experienced a rapid growth due to experimental discoveries of the global and local polarizations. Recent measurements triggered further development of the theoretical description of the spin dynamics and suggestions of several new mechanisms for particle polarization. In this review, we focus mostly on the experimental results. We compare the measurements with the existing theoretical calculations but try to keep the discussion of possible underlying physics at the qualitative level. Future measurements and how they can help to answer open theoretical questions are also discussed. We pay a special attention to the employed experimental methods, as well as to the detector effects and associated corrections to the measurements.
- STAR Collaboration, L. Adamczyk et al., “Global ΛΛ\Lambdaroman_Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid”, Nature 548, 62–65 (2017), arXiv:1701.06657.
- STAR Collaboration, J. Adam et al., “Polarization of ΛΛ\Lambdaroman_Λ (Λ¯¯Λ\bar{\Lambda}over¯ start_ARG roman_Λ end_ARG) hyperons along the beam direction in Au+Au collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{{}_{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT italic_N italic_N end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. Lett. 123, no. 13, 132301 (2019), arXiv:1905.11917.
- STAR Collaboration, K. H. Ackermann et al., “Elliptic flow in Au + Au collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 130 GeV”, Phys. Rev. Lett. 86, 402–407 (2001), arXiv:nucl-ex/0009011.
- STAR Collaboration, C. Adler et al., “Disappearance of back-to-back high pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT hadron correlations in central Au+Au collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. Lett. 90, 082302 (2003), arXiv:nucl-ex/0210033.
- PHENIX Collaboration, S. S. Adler et al., “Suppressed π0superscript𝜋0\pi^{0}italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT production at large transverse momentum in central Au+ Au collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. Lett. 91, 072301 (2003), arXiv:nucl-ex/0304022.
- S. A. Voloshin, A. M. Poskanzer, and R. Snellings, “Collective phenomena in non-central nuclear collisions”, Landolt-Bornstein 23, 293–333 (2010).
- Z.-T. Liang and X.-N. Wang, “Globally polarized quark-gluon plasma in non-central A+A collisions”, Phys. Rev. Lett. 94, 102301 (2005). [Erratum: Phys.Rev.Lett. 96, 039901 (2006)].
- S. A. Voloshin, “Polarized secondary particles in unpolarized high energy hadron-hadron collisions?”, arXiv:nucl-th/0410089.
- F. Becattini, F. Piccinini, and J. Rizzo, “Angular momentum conservation in heavy ion collisions at very high energy”, Phys. Rev. C 77, 024906 (2008), arXiv:0711.1253.
- Springer Berlin, Heidelberg, 2013.
- Z.-T. Liang and X.-N. Wang, “Spin alignment of vector mesons in non-central A+A collisions”, Phys. Lett. B 629, 20–26 (2005), arXiv:nucl-th/0411101.
- STAR Collaboration, B. I. Abelev et al., “Global polarization measurement in Au+Au collisions”, Phys. Rev. C 76, 024915 (2007), arXiv:0705.1691. [Erratum: Phys.Rev.C 95, 039906 (2017)].
- J.-H. Gao, S.-W. Chen, W.-t. Deng, Z.-T. Liang, Q. Wang, and X.-N. Wang, “Global quark polarization in non-central A+A collisions”, Phys. Rev. C 77, 044902 (2008), arXiv:0710.2943.
- B. Betz, M. Gyulassy, and G. Torrieri, “Polarization probes of vorticity in heavy ion collisions”, Phys. Rev. C 76, 044901 (2007).
- W. M. Serenone, J. a. G. P. Barbon, D. D. Chinellato, M. A. Lisa, C. Shen, J. Takahashi, and G. Torrieri, “ΛΛ\Lambdaroman_Λ polarization from thermalized jet energy”, Phys. Lett. B 820, 136500 (2021), arXiv:2102.11919.
- L.-G. Pang, H. Petersen, Q. Wang, and X.-N. Wang, “Vortical Fluid and ΛΛ\Lambdaroman_Λ Spin Correlations in High-Energy Heavy-Ion Collisions”, Phys. Rev. Lett. 117, no. 19, 192301 (2016), arXiv:1605.04024.
- S. A. Voloshin, “Vorticity and particle polarization in heavy ion collisions (experimental perspective)”, EPJ Web Conf. 171, 07002 (2018), arXiv:1710.08934.
- F. Becattini and Iu. Karpenko, “Collective longitudinal polarization in relativistic heavy-ion collisions at very high energy”, Phys. Rev. Lett. 120, 012302 (2018), arXiv:1707.07984.
- X.-L. Xia, H. Li, Z.-B. Tang, and Q. Wang, “Probing vorticity structure in heavy-ion collisions by local ΛΛ\Lambdaroman_Λ polarization”, Phys. Rev. C 98, 024905 (2018), arXiv:1803.00867.
- F. Becattini and F. Piccinini, “The Ideal relativistic spinning gas: Polarization and spectra”, Annals Phys. 323, 2452–2473 (2008), arXiv:0710.5694.
- F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, “Relativistic distribution function for particles with spin at local thermodynamical equilibrium”, Annals Phys. 338, 32–49 (2013), arXiv:1303.3431.
- F. Becattini, I. Karpenko, M. Lisa, I. Upsal, and S. Voloshin, “Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down”, Phys. Rev. C 95, no. 5, 054902 (2017), arXiv:1610.02506.
- L. P. Csernai, V. K. Magas, and D. J. Wang, “Flow Vorticity in Peripheral High Energy Heavy Ion Collisions”, Phys. Rev. C 87, no. 3, 034906 (2013), arXiv:1302.5310.
- P. Boz˙˙z\dot{\rm z}over˙ start_ARG roman_z end_ARGek and I. Wyskiel, “Directed flow in ultrarelativistic heavy-ion collisions”, Phys. Rev. C 81, 054902 (2010).
- F. Becattini, G. Inghirami, V. Rolando, A. Beraudo, L. Del Zanna, A. De Pace, M. Nardi, G. Pagliara, and V. Chandra, “A study of vorticity formation in high energy nuclear collisions”, Eur. Phys. J. C 75, no. 9, 406 (2015), arXiv:1501.04468. [Erratum: Eur.Phys.J.C 78, 354 (2018)].
- STAR Collaboration, L. Adamczyk et al., “Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions”, Phys. Rev. Lett. 112, no. 16, 162301 (2014), arXiv:1401.3043.
- S. Singha, P. Shanmuganathan, and D. Keane, “The first moment of azimuthal anisotropy in nuclear collisions from AGS to LHC energies”, Adv. High Energy Phys. 2016, 2836989 (2016), arXiv:1610.00646.
- ALICE Collaboration, B. Abelev et al., “Directed Flow of Charged Particles at Midrapidity Relative to the Spectator Plane in Pb-Pb Collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. Lett. 111, no. 23, 232302 (2013), arXiv:1306.4145.
- STAR Collaboration, B. I. Abelev et al., “System-size independence of directed flow at the Relativistic Heavy-Ion Collider”, Phys. Rev. Lett. 101, 252301 (2008), arXiv:0807.1518.
- ALICE Collaboration, S. Acharya et al., “Probing the effects of strong electromagnetic fields with charge-dependent directed flow in Pb-Pb collisions at the LHC”, Phys. Rev. Lett. 125, no. 2, 022301 (2020), arXiv:1910.14406.
- STAR Collaboration, L. Adamczyk et al., “Azimuthal anisotropy in Cu+Au collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{{}_{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT italic_N italic_N end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. C 98, no. 1, 014915 (2018), arXiv:1712.01332.
- D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, “The Effects of topological charge change in heavy ion collisions: ’Event by event P and CP violation”’, Nucl. Phys. A 803, 227–253 (2008), arXiv:0711.0950.
- V. Skokov, A. Y. Illarionov, and V. Toneev, “Estimate of the magnetic field strength in heavy-ion collisions”, Int. J. Mod. Phys. A 24, 5925–5932 (2009), arXiv:0907.1396.
- V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya, V. P. Konchakovski, and S. A. Voloshin, “(Electro-)Magnetic field evolution in relativistic heavy-ion collisions”, Phys. Rev. C 83, 054911 (2011), arXiv:1103.4239.
- K. Tuchin, “Particle production in strong electromagnetic fields in relativistic heavy-ion collisions”, Adv. High Energy Phys. 2013, 490495 (2013), arXiv:1301.0099.
- B. Müller and A. Schäfer, “Chiral magnetic effect and an experimental bound on the late time magnetic field strength”, Phys. Rev. D 98, no. 7, 071902 (2018), arXiv:1806.10907.
- D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, “Chiral magnetic and vortical effects in high-energy nuclear collisions–A status report”, Prog. Part. Nucl. Phys. 88, 1 (2016), arXiv:1511.04050.
- X. Guo, J. Liao, and E. Wang, “Spin Hydrodynamic Generation in the Charged Subatomic Swirl”, Sci. Rep. 10, no. 1, 2196 (2020), arXiv:1904.04704.
- O. Vitiuk, L. V. Bravina, and E. E. Zabrodin, “Is different ΛΛ\Lambdaroman_Λ and Λ¯¯Λ\bar{\Lambda}over¯ start_ARG roman_Λ end_ARG polarization caused by different spatio-temporal freeze-out picture?”, Phys. Lett. B 803, 135298 (2020), arXiv:1910.06292.
- L. P. Csernai, J. I. Kapusta, and T. Welle, “ΛΛ\Lambdaroman_Λ and Λ¯¯Λ\bar{\Lambda}over¯ start_ARG roman_Λ end_ARG spin interaction with meson fields generated by the baryon current in high energy nuclear collisions”, Phys. Rev. C 99, no. 2, 021901 (2019), arXiv:1807.11521.
- R.-H. Fang, L.-G. Pang, Q. Wang, and X.-N. Wang, “Polarization of massive fermions in a vortical fluid”, Phys. Rev. C 94, no. 2, 024904 (2016), arXiv:1604.04036.
- STAR Collaboration, C. Adler et al., “Identified particle elliptic flow in Au + Au collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 130 GeV”, Phys. Rev. Lett. 87, 182301 (2001), arXiv:nucl-ex/0107003.
- S. A. Voloshin, “Femtoscopy of the system shape fluctuations in heavy ion collisions”, J. Phys. G 38, 124097 (2011), arXiv:1106.5830.
- STAR Collaboration, J. Adams et al., “Pion interferometry in Au+Au collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. C 71, 044906 (2005), arXiv:nucl-ex/0411036.
- Y. B. Ivanov and A. A. Soldatov, “Vortex rings in fragmentation regions in heavy-ion collisions at sNN=subscript𝑠𝑁𝑁absent\sqrt{s_{NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 39 GeV”, Phys. Rev. C 97, no. 4, 044915 (2018), arXiv:1803.01525.
- M. A. Lisa, J. a. G. P. Barbon, D. D. Chinellato, W. M. Serenone, C. Shen, J. Takahashi, and G. Torrieri, “Vortex rings from high energy central p+A collisions”, Phys. Rev. C 104, no. 1, 011901 (2021), arXiv:2101.10872.
- Y. Tachibana and T. Hirano, “Emission of Low Momentum Particles at Large Angles from Jet”, Nucl. Phys. A 904-905, 1023c–1026c (2013), arXiv:1210.5567.
- I. Karpenko and F. Becattini, “Study of ΛΛ\Lambdaroman_Λ polarization in relativistic nuclear collisions at sNN=7.7subscript𝑠NN7.7\sqrt{s_{\mathrm{NN}}}=7.7square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 7.7 –200 GeV”, Eur. Phys. J. C 77, no. 4, 213 (2017), arXiv:1610.04717.
- S. Y. F. Liu and Y. Yin, “Spin polarization induced by the hydrodynamic gradients”, JHEP 07, 188 (2021), arXiv:2103.09200.
- F. Becattini, M. Buzzegoli, and A. Palermo, “Spin-thermal shear coupling in a relativistic fluid”, Phys. Lett. B 820, 136519 (2021), arXiv:2103.10917.
- S. Y. F. Liu and Y. Yin, “Spin Hall effect in heavy-ion collisions”, Phys. Rev. D 104, no. 5, 054043 (2021), arXiv:2006.12421.
- F. Cooper and G. Frye, “Comment on the Single Particle Distribution in the Hydrodynamic and Statistical Thermodynamic Models of Multiparticle Production”, Phys. Rev. D 10, 186 (1974).
- D. H. Rischke, “Fluid dynamics for relativistic nuclear collisions”, Lect. Notes Phys. 516, 21 (1999), arXiv:nucl-th/9809044.
- V. K. Magas, C. Anderlik, L. P. Csernai, F. Grassi, W. Greiner, Y. Hama, T. Kodama, Z. I. Lazar, and H. Stoecker, “Freezeout in hydrodynamical models in relativistic heavy ion collisions”, Nucl. Phys. A 661, 596–599 (1999), arXiv:nucl-th/0001049.
- V. Koch, S. Schlichting, V. Skokov, P. Sorensen, J. Thomas, S. Voloshin, G. Wang, and H.-U. Yee, “Status of the chiral magnetic effect and collisions of isobars”, Chin. Phys. C 41, no. 7, 072001 (2017), arXiv:1608.00982.
- F. Becattini, “Does the spin tensor play any role in non-gravitational physics?”, Nucl. Phys. A 1005, 121833 (2021), arXiv:2003.01406.
- Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle Physics”, PTEP 2022, 083C01 (2022).
- BESIII Collaboration, M. Ablikim et al., “Probing CP symmetry and weak phases with entangled double-strange baryons”, Nature 606, no. 7912, 64–69 (2022), arXiv:2105.11155.
- BESIII Collaboration, M. Ablikim et al., “Precise Measurements of Decay Parameters and CP𝐶𝑃CPitalic_C italic_P Asymmetry with Entangled Λ−Λ¯Λ¯Λ\Lambda-\bar{\Lambda}roman_Λ - over¯ start_ARG roman_Λ end_ARG Pairs Pairs”, Phys. Rev. Lett. 129, no. 13, 131801 (2022), arXiv:2204.11058.
- T. D. Lee and C.-N. Yang, “General Partial Wave Analysis of the Decay of a Hyperon of Spin 1/2”, Phys. Rev. 108, 1645–1647 (1957).
- E756 Collaboration, K. B. Luk et al., “Search for direct CP violation in nonleptonic decays of charged ΞΞ\Xiroman_Ξ and ΛΛ\Lambdaroman_Λ hyperons”, Phys. Rev. Lett. 85, 4860–4863 (2000), arXiv:hep-ex/0007030.
- HyperCP Collaboration, M. Huang et al., “New measurement of Ξ→Λπ−→ΞΛsuperscript𝜋\Xi\rightarrow\Lambda\pi^{-}roman_Ξ → roman_Λ italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT decay parameters”, Phys. Rev. Lett. 93, 011802 (2004).
- K. B. Luk et al., “New Measurements of Properties of the Ω−superscriptΩ\Omega^{-}roman_Ω start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT Hyperon”, Phys. Rev. D 38, 19–31 (1988).
- K.-B. Luk, A Study of the omega- Hyperon. PhD thesis, Rutgers U., Piscataway, 1983.
- J. Kim, J. Lee, J. S. Shim, and H. S. Song, “Polarization effects in spin 3/2 hyperon decay”, Phys. Rev. D 46, 1060–1063 (1992).
- S. A. Voloshin and T. Niida, “Ultra-relativistic nuclear collisions: Direction of spectator flow”, Phys. Rev. C 94, 021901(R) (2016), arXiv:1604.04597.
- W. Florkowski and R. Ryblewski, “Interpretation of ΛΛ\Lambdaroman_Λ spin polarization measurements”, Phys. Rev. C 106, no. 2, 024905 (2022), arXiv:2102.02890.
- STAR Collaboration Collaboration, J. Adam et al., “Strange hadron production in Au+Au collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 7.7, 11.5, 19.6, 27, and 39 GeV”, Phys. Rev. C 102, no. 3, 034909 (2020), arXiv:1906.03732.
- H. Li, L.-G. Pang, Q. Wang, and X.-L. Xia, “Global ΛΛ\Lambdaroman_Λ polarization in heavy-ion collisions from a transport model”, Phys. Rev. C 96, no. 5, 054908 (2017), arXiv:1704.01507.
- X.-L. Xia, H. Li, X.-G. Huang, and H. Z. Huang, “Feed-down effect on ΛΛ\Lambdaroman_Λ spin polarization”, Phys. Rev. C 100, no. 1, 014913 (2019), arXiv:1905.03120.
- H. Li, X.-L. Xia, X.-G. Huang, and H. Z. Huang, “Global spin polarization of multistrange hyperons and feed-down effect in heavy-ion collisions”, Phys. Lett. B 827, 136971 (2022), arXiv:2106.09443.
- A. H. Tang, A. H. Tang, B. Tu, A. H. Tang, C. S. Zhou, B. Tu, B. Tu, C. S. Zhou, and C. S. Zhou, “Practical considerations for measuring global spin alignment of vector mesons in relativistic heavy ion collisions”, Phys. Rev. C 98, no. 4, 044907 (2018), arXiv:1803.05777. [Erratum: Phys.Rev.C 107, 039901 (2023)].
- P. Faccioli, C. Lourenco, J. Seixas, and H. K. Wohri, “Towards the experimental clarification of quarkonium polarization”, Eur. Phys. J. C 69, 657–673 (2010), arXiv:1006.2738.
- S. Lan, Z.-W. Lin, S. Shi, and X. Sun, “Effects of finite coverage on global polarization observables in heavy ion collisions”, Phys. Lett. B 780, 319–324 (2018), arXiv:1710.03895.
- ALICE Collaboration, S. Acharya et al., “Global polarization of ΛΛ\Lambdaroman_Λ and Λ¯¯Λ\bar{\Lambda}over¯ start_ARG roman_Λ end_ARG hyperons in Pb-Pb collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 and 5.02 TeV”, Phys. Rev. C 101, no. 4, 044611 (2020), arXiv:1909.01281.
- C. d. C. Barros, Jr. and Y. Hama, “Antihyperon polarization in high-energy inclusive reactions”, Int. J. Mod. Phys. E 17, 371–392 (2008), arXiv:hep-ph/0507013.
- C. d. C. Barros, Jr. and Y. Hama, “ΛΛ\Lambdaroman_Λ and Λ¯¯Λ\bar{\Lambda}over¯ start_ARG roman_Λ end_ARG polarization in Au-Au collisions at RHIC”, Phys. Lett. B 699, 74–77 (2011), arXiv:0712.3447.
- Y. Xie, D. Wang, and L. P. Csernai, “Global ΛΛ\Lambdaroman_Λ polarization in high energy collisions”, Phys. Rev. C 95, no. 3, 031901 (2017), arXiv:1703.03770.
- Y. B. Ivanov, V. D. Toneev, and A. A. Soldatov, “Estimates of hyperon polarization in heavy-ion collisions at collision energies sNN=subscript𝑠𝑁𝑁absent\sqrt{s_{NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 4–40 GeV”, Phys. Rev. C 100, no. 1, 014908 (2019), arXiv:1903.05455.
- Y. B. Ivanov, “Global ΛΛ\Lambdaroman_Λ polarization in moderately relativistic nuclear collisions”, Phys. Rev. C 103, no. 3, L031903 (2021), arXiv:2012.07597.
- Y. Sun and C. M. Ko, “ΛΛ\Lambdaroman_Λ hyperon polarization in relativistic heavy ion collisions from a chiral kinetic approach”, Phys. Rev. C 96, no. 2, 024906 (2017), arXiv:1706.09467.
- STAR Collaboration, M. S. Abdallah et al., “Global ΛΛ\Lambdaroman_Λ-hyperon polarization in Au+Au collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 3 GeV”, Phys. Rev. C 104, no. 6, L061901 (2021), arXiv:2108.00044.
- Particle Data Group Collaboration, P. Zyla et al., “Review of Particle Physics”, PTEP 2020 issue 8, no. 8, 083C01 (2020).
- X.-G. Deng, X.-G. Huang, Y.-G. Ma, and S. Zhang, “Vorticity in low-energy heavy-ion collisions”, Phys. Rev. C 101, no. 6, 064908 (2020), arXiv:2001.01371.
- A. Ayala, I. Domínguez, I. Maldonado, and M. E. Tejeda-Yeomans, “Rise and fall of ΛΛ\Lambdaroman_Λ and Λ¯¯Λ\bar{\Lambda}over¯ start_ARG roman_Λ end_ARG global polarization in semi-central heavy-ion collisions at HADES, NICA and RHIC energies from the core-corona model”, Phys. Rev. C 105, no. 3, 034907 (2022), arXiv:2106.14379.
- Y. Guo, J. Liao, E. Wang, H. Xing, and H. Zhang, “Hyperon polarization from the vortical fluid in low-energy nuclear collisions”, Phys. Rev. C 104, no. 4, L041902 (2021), arXiv:2105.13481.
- HADES Collaboration, R. Abou Yassine et al., “Measurement of global polarization of ΛΛ\Lambdaroman_Λ hyperons in few-GeV heavy-ion collisions”, Phys. Lett. B 835, 137506 (2022), arXiv:2207.05160.
- STAR Collaboration, M. I. Abdulhamid et al., “Global polarization of ΛΛ\Lambdaroman_Λ and Λ¯¯Λ\bar{\Lambda}over¯ start_ARG roman_Λ end_ARG hyperons in Au+Au collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 19.6 and 27 GeV”, Phys. Rev. C 108, no. 1, 014910 (2023), arXiv:2305.08705.
- Y. Guo, S. Shi, S. Feng, and J. Liao, “Magnetic Field Induced Polarization Difference between Hyperons and Anti-hyperons”, Phys. Lett. B 798, 134929 (2019), arXiv:1905.12613.
- Y. Jiang, Z.-W. Lin, and J. Liao, “Rotating quark-gluon plasma in relativistic heavy ion collisions”, Phys. Rev. C 94, no. 4, 044910 (2016), arXiv:1602.06580. [Erratum: Phys. Rev. C 95, 049904 (2017)].
- S. Ryu, V. Jupic, and C. Shen, “Probing early-time longitudinal dynamics with the ΛΛ\Lambdaroman_Λ hyperon’s spin polarization in relativistic heavy-ion collisions”, Phys. Rev. C 104, no. 5, 054908 (2021), arXiv:2106.08125.
- W.-T. Deng and X.-G. Huang, “Vorticity in Heavy-Ion Collisions”, Phys. Rev. C 93, no. 6, 064907 (2016), arXiv:1603.06117.
- D.-X. Wei, W.-T. Deng, and X.-G. Huang, “Thermal vorticity and spin polarization in heavy-ion collisions”, Phys. Rev. C 99, no. 1, 014905 (2019), arXiv:1810.00151.
- H.-Z. Wu, L.-G. Pang, X.-G. Huang, and Q. Wang, “Local spin polarization in high energy heavy ion collisions”, Phys. Rev. Research. 1, 033058 (2019), arXiv:1906.09385.
- Y. Xie, D. Wang, and L. P. Csernai, “Fluid dynamics study of the ΛΛ\varLambdaroman_Λ polarization for Au + Au collisions at sNN=200subscript𝑠𝑁𝑁200\sqrt{s_{NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV”, Eur. Phys. J. C 80, no. 1, 39 (2020), arXiv:1907.00773.
- Z.-T. Liang, J. Song, I. Upsal, Q. Wang, and Z.-B. Xu, “Rapidity dependence of global polarization in heavy ion collisions”, Chin. Phys. C 45, no. 1, 014102 (2021), arXiv:1912.10223.
- M. Baznat, K. Gudima, A. Sorin, and O. Teryaev, “Hyperon polarization in Heavy-Ion Collisions and gravity-related anomaly”, Phys. Rev. C 97, no. 4, 041902 (2018), arXiv:1701.00923.
- C.-M. Ko, “Chiral kinetic modeling of vorticity and polarization”, 2020. INT workshop on Chirality and Criticality: Novel Phenomena in HIC.
- STAR Collaboration, T. Niida, “Global and local polarization of ΛΛ\Lambdaroman_Λ hyperons in Au+Au collisions at 200 GeV from STAR”, Nucl. Phys. A 982, 511–514 (2019), arXiv:1808.10482.
- B. Fu, K. Xu, X.-G. Huang, and H. Song, “Hydrodynamic study of hyperon spin polarization in relativistic heavy ion collisions”, Phys. Rev. C 103, no. 2, 024903 (2021), arXiv:2011.03740.
- F. Becattini, M. Buzzegoli, G. Inghirami, I. Karpenko, and A. Palermo, “Local Polarization and Isothermal Local Equilibrium in Relativistic Heavy Ion Collisions”, Phys. Rev. Lett. 127, no. 27, 272302 (2021), arXiv:2103.14621.
- STAR Collaboration, J. Adam et al., “Global polarization of ΞΞ\Xiroman_Ξ and ΩΩ\Omegaroman_Ω hyperons in Au+Au collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{{}_{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT italic_N italic_N end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. Lett 126, 162301(4, 2021) , arXiv:2012.13601.
- B. I. Abelev and others (STAR Collaboration), “Spin alignment measurements of the K∗0∗absent0{}^{\ast 0}start_FLOATSUPERSCRIPT ∗ 0 end_FLOATSUPERSCRIPT(892) and ϕitalic-ϕ\phiitalic_ϕ(1020) vector mesons in heavy ion collisions at sNN=subscript𝑠𝑁𝑁absent\sqrt{s_{NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. C 77, 061902 (2008), arXiv:0801.1729.
- ALICE Collaboration, S. Acharya et al., “Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions”, Phys. Rev. Lett. 125, no. 1, 012301 (2020), arXiv:1910.14408.
- C. Zhou, “ϕitalic-ϕ\phiitalic_ϕ Meson and K * 0 Global Spin Alignment at STAR”, Nucl. Phys. A 982, 559–562 (2019).
- STAR Collaboration, M. S. Abdallah et al., “Pattern of global spin alignment of ϕitalic-ϕ\phiitalic_ϕ and K*0absent0{}^{*0}start_FLOATSUPERSCRIPT * 0 end_FLOATSUPERSCRIPT mesons in heavy-ion collisions”, Nature 614, no. 7947, 244–248 (2023), arXiv:2204.02302.
- X.-L. Sheng, L. Oliva, and Q. Wang, “What can we learn from the global spin alignment of ϕitalic-ϕ\phiitalic_ϕ mesons in heavy-ion collisions?”, Phys. Rev. D 101, no. 9, 096005 (2020), arXiv:1910.13684.
- X.-L. Sheng, Q. Wang, and X.-N. Wang, “Improved quark coalescence model for spin alignment and polarization of hadrons”, Phys. Rev. D 102, no. 5, 056013 (2020), arXiv:2007.05106.
- ALICE Collaboration, S. Acharya et al., “Measurement of the J/ψ𝜓\psiitalic_ψ Polarization with Respect to the Event Plane in Pb-Pb Collisions at the LHC”, Phys. Rev. Lett. 131, no. 4, 042303 (2023), arXiv:2204.10171.
- D. Shen (STAR), “Measurement of J/ψ𝜓\psiitalic_ψ polarization and spin alignment in Ru+Ru and Zr+Zr collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV at STAR.”. 25th International Symposium on Spin Physics (SPIN2023).
- ALICE Collaboration, S. Acharya et al., “First measurement of prompt and non-prompt D*+ vector meson spin alignment in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 846, 137920 (2023), arXiv:2212.06588.
- L. Micheletti (ALICE), “Vector meson polarisation in heavy-ion collisions at the LHC.”. XXXth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2023).
- LHCb Collaboration, R. Aaij et al., “Measurement of the ΥΥ\Upsilonroman_Υ polarizations in pp𝑝𝑝ppitalic_p italic_p collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 and 8 TeV”, JHEP 12, 110 (2017), arXiv:1709.01301.
- ALICE Collaboration, S. Acharya et al., “Polarization of ΛΛ\Lambdaroman_Λ and Λ¯¯Λ\overline{\Lambda}over¯ start_ARG roman_Λ end_ARG hyperons along the beam direction in Pb-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, arXiv:2107.11183.
- STAR Collaboration, “Hyperon polarization along the beam direction relative to the second and third harmonic event planes in isobar collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV”, arXiv:2303.09074.
- W. Florkowski, A. Kumar, R. Ryblewski, and A. Mazeliauskas, “Longitudinal spin polarization in a thermal model”, Phys. Rev. C 100, no. 5, 054907 (2019), arXiv:1904.00002.
- Y. Sun and C. M. Ko, “Azimuthal angle dependence of the longitudinal spin polarization in relativistic heavy ion collisions”, Phys. Rev. C99, no. 1, 011903 (2019).
- B. Fu, S. Y. F. Liu, L. Pang, H. Song, and Y. Yin, “Shear-Induced Spin Polarization in Heavy-Ion Collisions”, Phys. Rev. Lett. 127, no. 14, 142301 (2021), arXiv:2103.10403.
- W. Florkowski, A. Kumar, A. Mazeliauskas, and R. Ryblewski, “Effect of thermal shear on longitudinal spin polarization in a thermal model”, Phys. Rev. C 105, no. 6, 064901 (2022), arXiv:2112.02799.
- C. Yi, S. Pu, and D.-L. Yang, “Reexamination of local spin polarization beyond global equilibrium in relativistic heavy ion collisions”, Phys. Rev. C 104, no. 6, 064901 (2021), arXiv:2106.00238.
- Y. Sun, Z. Zhang, C. M. Ko, and W. Zhao, “Evolution of ΛΛ\Lambdaroman_Λ polarization in the hadronic phase of heavy-ion collisions”, Phys. Rev. C 105, no. 3, 034911 (2022), arXiv:2112.14410.
- S. Alzhrani, S. Ryu, and C. Shen, “ΛΛ\Lambdaroman_Λ spin polarization in event-by-event relativistic heavy-ion collisions”, Phys. Rev. C 106, no. 1, 014905 (2022), arXiv:2203.15718.
- PHENIX Collaboration, A. Adare et al., “Measurement of the higher-order anisotropic flow coefficients for identified hadrons in Au+++Au collisions at sNNsubscript𝑠𝑁𝑁\sqrt{s_{{}_{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT italic_N italic_N end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. C 93, no. 5, 051902 (2016), arXiv:1412.1038.
- J. Schukraft, A. Timmins, and S. A. Voloshin, “Ultra-relativistic nuclear collisions: event shape engineering”, Phys. Lett. B 719, 394–398 (2013), arXiv:1208.4563.