Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safety-critical Autonomous Inspection of Distillation Columns using Quadrupedal Robots Equipped with Roller Arms (2404.10938v1)

Published 16 Apr 2024 in cs.RO

Abstract: This paper proposes a comprehensive framework designed for the autonomous inspection of complex environments, with a specific focus on multi-tiered settings such as distillation column trays. Leveraging quadruped robots equipped with roller arms, and through the use of onboard perception, we integrate essential motion components including: locomotion, safe and dynamic transitions between trays, and intermediate motions that bridge a variety of motion primitives. Given the slippery and confined nature of column trays, it is critical to ensure safety of the robot during inspection, therefore we employ a safety filter and footstep re-planning based upon control barrier function representations of the environment. Our framework integrates all system components into a state machine encoding the developed safety-critical planning and control elements to guarantee safety-critical autonomy, enabling autonomous and safe navigation and inspection of distillation columns. Experimental validation in an environment, consisting of industrial-grade chemical distillation trays, highlights the effectiveness of our multi-layered architecture.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. W. Echelmeyer, A. Kirchheim, and E. Wellbrock, “Robotics-logistics: Challenges for automation of logistic processes,” in IEEE International Conference on Automation and Logistics, 2008, pp. 2099–2103.
  2. J. Lee, M. Seo, A. Bylard, R. Sun, and L. Sentis, “Real-time model predictive control for industrial manipulators with singularity-tolerant hierarchical task control,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2023, pp. 12 282–12 288.
  3. D. Lattanzi and G. Miller, “Review of robotic infrastructure inspection systems,” Journal of Infrastructure Systems, vol. 23, no. 3, p. 04017004, 2017.
  4. R. S. Lim, H. M. La, Z. Shan, and W. Sheng, “Developing a crack inspection robot for bridge maintenance,” in Proceedings of the IEEE International Conference on Robotics and Automation, 2011, pp. 6288–6293.
  5. J. Lee, J. Kim, W. Ubellacker, T. G. Molnar, and A. D. Ames, “Safety-critical control of quadrupedal robots with rolling arms for autonomous inspection of complex environments,” arXiv preprint arXiv:2312.07778, 2023.
  6. R. R. Murphy, “Human-robot interaction in rescue robotics,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 34, no. 2, pp. 138–153, 2004.
  7. T. G. Molnar, K. Tighe, W. Ubellacker, A. Kalantari, and A. D. Ames, “Mechanical design, planning, and control for legged robots in distillation columns,” Journal of Computational and Nonlinear Dynamics, vol. 18, no. 6, p. 061001, 2023.
  8. T. G. Molnar, R. K. Cosner, A. W. Singletary, W. Ubellacker, and A. D. Ames, “Model-free safety-critical control for robotic systems,” IEEE robotics and automation letters, vol. 7, no. 2, pp. 944–951, 2021.
  9. R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter, “Multi-layered safety for legged robots via control barrier functions and model predictive control,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 8352–8358.
  10. J. Lee, J. Kim, and A. D. Ames, “Hierarchical relaxation of safety-critical controllers: Mitigating contradictory safety conditions with application to quadruped robots,” arXiv preprint arXiv:2305.03929, 2023.
  11. A. Agrawal and K. Sreenath, “Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation.” in Robotics: Science and Systems, vol. 13.   Cambridge, MA, USA, 2017, pp. 1–10.
  12. N. Csomay-Shanklin, R. K. Cosner, M. Dai, A. J. Taylor, and A. D. Ames, “Episodic learning for safe bipedal locomotion with control barrier functions and projection-to-state safety,” in Learning for Dynamics and Control.   PMLR, 2021, pp. 1041–1053.
  13. R. K. Cosner, I. Sadalski, J. K. Woo, P. Culbertson, and A. D. Ames, “Generative modeling of residuals for real-time risk-sensitive safety with discrete-time control barrier functions,” arXiv preprint arXiv:2311.05802, 2023.
  14. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2016.
  15. K. P. Wabersich, A. J. Taylor, J. J. Choi, K. Sreenath, C. J. Tomlin, A. D. Ames, and M. N. Zeilinger, “Data-driven safety filters: Hamilton-jacobi reachability, control barrier functions, and predictive methods for uncertain systems,” IEEE Control Systems Magazine, vol. 43, no. 5, pp. 137–177, 2023.
  16. J. Kim, J. Lee, and A. D. Ames, “Safety-critical coordination for cooperative legged locomotion via control barrier functions,” arXiv preprint arXiv:2303.13630, 2023.
  17. M. Jankovic, M. Santillo, and Y. Wang, “Multiagent systems with cbf-based controllers: Collision avoidance and liveness from instability,” IEEE Transactions on Control Systems Technology, 2023.
  18. J. Lee, N. Mansard, and J. Park, “Intermediate desired value approach for task transition of robots in kinematic control,” IEEE Transactions on Robotics, vol. 28, no. 6, pp. 1260–1277, 2012.
  19. A. Rocchi, E. M. Hoffman, D. G. Caldwell, and N. G. Tsagarakis, “Opensot: a whole-body control library for the compliant humanoid robot coman,” in 2015 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2015, pp. 6248–6253.
  20. D. Kim, S. J. Jorgensen, J. Lee, J. Ahn, J. Luo, and L. Sentis, “Dynamic locomotion for passive-ankle biped robots and humanoids using whole-body locomotion control,” The International Journal of Robotics Research, vol. 39, no. 8, pp. 936–956, 2020.
  21. C. D. Bellicoso, F. Jenelten, P. Fankhauser, C. Gehring, J. Hwangbo, and M. Hutter, “Dynamic locomotion and whole-body control for quadrupedal robots,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 3359–3365.
  22. S. Zapolsky and E. Drumwright, “Quadratic programming-based inverse dynamics control for legged robots with sticking and slipping frictional contacts,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2014, pp. 3266–3271.
  23. L. Righetti, J. Buchli, M. Mistry, and S. Schaal, “Inverse dynamics control of floating-base robots with external constraints: A unified view,” in 2011 IEEE international conference on robotics and automation.   IEEE, 2011, pp. 1085–1090.
  24. J. Lee, J. Ahn, D. Kim, S. H. Bang, and L. Sentis, “Online gain adaptation of whole-body control for legged robots with unknown disturbances,” Frontiers in Robotics and AI, vol. 8, p. 788902, 2022.
  25. J. Lee, H. Dallali, M. Jin, D. Caldwell, and N. Tsagarakis, “Robust and adaptive whole-body controller for humanoids with multiple tasks under uncertain disturbances,” in 2016 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2016, pp. 5683–5689.
  26. F. Farshidian, E. Jelavić, A. W. Winkler, and J. Buchli, “Robust whole-body motion control of legged robots,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 4589–4596.
  27. P. M. Viceconte, R. Camoriano, G. Romualdi, D. Ferigo, S. Dafarra, S. Traversaro, G. Oriolo, L. Rosasco, and D. Pucci, “Adherent: Learning human-like trajectory generators for whole-body control of humanoid robots,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2779–2786, 2022.
  28. D. Ferigo, R. Camoriano, P. M. Viceconte, D. Calandriello, S. Traversaro, L. Rosasco, and D. Pucci, “On the emergence of whole-body strategies from humanoid robot push-recovery learning,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8561–8568, 2021.
  29. R. K. Cosner, A. W. Singletary, A. J. Taylor, T. G. Molnar, K. L. Bouman, and A. D. Ames, “Measurement-robust control barrier functions: Certainty in safety with uncertainty in state,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 6286–6291.
  30. S. Bertrand, I. Lee, B. Mishra, D. Calvert, J. Pratt, and R. Griffin, “Detecting usable planar regions for legged robot locomotion,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 4736–4742.
  31. B. Mishra, D. Calvert, S. Bertrand, S. McCrory, R. Griffin, and H. E. Sevil, “Gpu-accelerated rapid planar region extraction for dynamic behaviors on legged robots,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 8493–8499.
  32. I. Havoutis, J. Ortiz, S. Bazeille, V. Barasuol, C. Semini, and D. G. Caldwell, “Onboard perception-based trotting and crawling with the hydraulic quadruped robot (hyq),” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2013, pp. 6052–6057.
  33. T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning robust perceptive locomotion for quadrupedal robots in the wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.
  34. M. A. Goodrich, T. W. McLain, J. D. Anderson, J. Sun, and J. W. Crandall, “Managing autonomy in robot teams: observations from four experiments,” in Proceedings of the ACM/IEEE international conference on Human-robot interaction, 2007, pp. 25–32.
  35. P. Schermerhorn and M. Scheutz, “Dynamic robot autonomy: Investigating the effects of robot decision-making in a human-robot team task,” in Proceedings of the 2009 international conference on multimodal interfaces, 2009, pp. 63–70.
  36. R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An architecture for autonomy,” The International Journal of Robotics Research, vol. 17, no. 4, pp. 315–337, 1998.
  37. M. Iovino, J. Förster, P. Falco, J. J. Chung, R. Siegwart, and C. Smith, “On the programming effort required to generate behavior trees and finite state machines for robotic applications,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 5807–5813.
  38. R. Ghzouli, T. Berger, E. B. Johnsen, A. Wasowski, and S. Dragule, “Behavior trees and state machines in robotics applications,” IEEE Transactions on Software Engineering, 2023.
  39. A. Hereid and A. D. Ames, “Frost*: Fast robot optimization and simulation toolkit,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017, pp. 719–726.
  40. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an operator splitting solver for quadratic programs,” Mathematical Programming Computation, vol. 12, no. 4, pp. 637–672, 2020. [Online]. Available: https://doi.org/10.1007/s12532-020-00179-2
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com