Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum teleportation coexisting with classical communications in optical fiber (2404.10738v4)

Published 16 Apr 2024 in quant-ph

Abstract: The ability for quantum and conventional networks to operate in the same optical fibers would aid the deployment of quantum network technology on a large scale. Quantum teleportation is a fundamental operation in quantum networking, but has yet to be demonstrated in fibers populated with high-power conventional optical signals. Here we report to the best of our knowledge the first demonstration of quantum teleportation over fibers carrying conventional telecommunications traffic. Quantum state transfer is achieved over a 30.2-km fiber carrying 400-Gbps C-band classical traffic with a Bell state measurement performed at the fiber's midpoint. To protect quantum fidelity from spontaneous Raman scattering noise, we use optimal O-band quantum channels, narrow spectro-temporal filtering, and multi-photon coincidence detection. Fidelity is shown to be well maintained with an elevated C-band launch power of 18.7 dBm for the single-channel 400-Gbps signal, which we project could support multiple classical channels totaling many terabits/s aggregate data rates. These results show the feasibility of advanced quantum and classical network applications operating within a unified fiber infrastructure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. H. J. Kimble, “The quantum internet,” \JournalTitleNature 453, 1023–1030 (2008).
  2. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” \JournalTitleScience 362, eaam9288 (2018).
  3. P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” \JournalTitleElectronics Letters 33, 188–190(2) (1997). Publisher: Institution of Engineering and Technology.
  4. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” \JournalTitleNew Journal of Physics 11, 105001 (2009).
  5. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” \JournalTitleNew Journal of Physics 12, 063027 (2010).
  6. B. Qi, W. Zhu, L. Qian, and H.-K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” \JournalTitleNew Journal of Physics 12, 103042 (2010).
  7. K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber,” \JournalTitlePhysical Review X 2, 041010 (2012).
  8. J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” \JournalTitleScientific Reports 6, 35149 (2016).
  9. L.-J. Wang, K.-H. Zou, W. Sun, Y. Mao, Y.-X. Zhu, H.-L. Yin, Q. Chen, Y. Zhao, F. Zhang, T.-Y. Chen, and J.-W. Pan, “Long-distance copropagation of quantum key distribution and terabit classical optical data channels,” \JournalTitlePhys. Rev. A 95, 012301 (2017).
  10. Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” \JournalTitleOpt. Express 26, 6010–6020 (2018).
  11. J.-Q. Geng, G.-J. Fan-Yuan, S. Wang, Q.-F. Zhang, Y.-Y. Hu, W. Chen, Z.-Q. Yin, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Coexistence of quantum key distribution and optical transport network based on standard single-mode fiber at high launch power,” \JournalTitleOpt. Lett. 46, 2573–2576 (2021).
  12. P. Gavignet, E. Pincemin, F. Herviou, Y. Loussouarn, F. Mondain, A. J. Grant, L. Johnson, R. I. Woodward, J. F. Dynes, B. Summers, A. J. Shields, K. Taira, H. Sato, R. Zink, V. Grempka, V. Castay, and J. Zou, “Co-propagation of qkd & 6 tb/s (60x100g) dwdm channels with  17 dbm total wdm power in single and multi-span configurations,” \JournalTitleJournal of Lightwave Technology pp. 1–7 (2023).
  13. C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in oc-192 wdm environment,” in 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, (2006), pp. 1–3.
  14. A. Ciurana, V. Martin, J. Martinez-Mateo, B. Schrenk, M. Peev, and A. Poppe, “Entanglement Distribution in Optical Networks,” \JournalTitleIEEE Journal of Selected Topics in Quantum Electronics 21, 37–48 (2015).
  15. F. Hipp, M. Hentschel, S. Aleksic, A. Poppe, and H. Huebel, “Demonstration of a coexistence scheme between polarization-entangled QKD and classical data channels,” in Quantum Optics, vol. 9900 J. Stuhler and A. J. Shields, eds., International Society for Optics and Photonics (SPIE, 2016), p. 99000P.
  16. K. Kapoor, S. Xie, J. Chung, R. Valivarthi, C. Pena, L. Narvaez, N. Sinclair, J. P. Allmaras, A. D. Beyer, S. I. Davis, G. Fabre, G. Iskander, G. S. Kanter, R. Kettimuthu, B. Korzh, P. Kumar, N. Lauk, A. Mueller, M. Shaw, P. Spentzouris, M. Spiropulu, J. M. Thomas, and E. E. Wollman, “Picosecond Synchronization System for the Distribution of Photon Pairs through a Fiber Link between Fermilab and Argonne National Laboratories,” \JournalTitleIEEE Journal of Quantum Electronics pp. 1–1 (2023).
  17. J. M. Thomas, G. S. Kanter, and P. Kumar, “Designing noise-robust quantum networks coexisting in the classical fiber infrastructure,” \JournalTitleOpt. Express 31, 43035–43047 (2023).
  18. Y.-R. Fan, Y. Luo, Z.-C. Zhang, Y.-B. Li, S. Liu, D. Wang, D.-C. Zhang, G.-W. Deng, Y. Wang, H.-Z. Song, Z. Wang, L.-X. You, C.-Z. Yuan, G.-C. Guo, and Q. Zhou, “Energy-time entanglement coexisting with fiber-optical communication in the telecom c𝑐citalic_c band,” \JournalTitlePhys. Rev. A 108, L020601 (2023).
  19. X. Jing, C. Qian, X. Zheng, H. Nian, C. Wang, J. Tang, X. Gu, Y. Kong, T. Chen, Y. Liu, C. Sheng, D. Jiang, B. Niu, and L. Lu, “Coexistence of multiuser entanglement distribution and classical light in optical fiber network with a semiconductor chip,” \JournalTitleChip p. 100083 (2024).
  20. R. Wang, R. Yang, M. J. Clark, R. D. Oliveira, S. Bahrani, M. Peranić, M. Lončarić, M. Stipčević, J. Rarity, S. K. Joshi, S. K. Joshi, R. Nejabati, and D. Simeonidou, “Field trial of a dynamically switched quantum network supporting co-existence of entanglement, prepare-and-measure qkd and classical channels,” in 49th European Conference on Optical Communications (ECOC 2023), (Institution of Engineering and Technology, 2023), p. 1682 – 1685.
  21. S. J. B. Yoo, S. K. Singh, M. B. On, G. Gul, G. S. Kanter, R. Proietti, and P. Kumar, “Quantum wrapper networking,” \JournalTitleIEEE Communications Magazine pp. 1–7 (2024).
  22. A. Rahmouni, P. S. Kuo, Y. Li-Baboud, Y. S. I. A. Burenkov, M. V. Jabir, N. Lal, D. Reddy, M. Merzouki, L. Ma, A. Battou, S. V. Polyakov, O. Slattery, and T. Gerrits, “Metropolitan-scale entanglement distribution with co existing quantum and classical signals in a single fiber,” \JournalTitleArxiv (2024). ArXiv:2402.00617.
  23. R. Valivarthi, P. Umesh, C. John, K. A. Owen, V. B. Verma, S. W. Nam, D. Oblak, Q. Zhou, and W. Tittel, “Measurement-device-independent quantum key distribution coexisting with classical communication,” \JournalTitleQuantum Science and Technology 4, 045002 (2019).
  24. R. C. Berrevoets, T. Middelburg, R. F. L. Vermeulen, L. D. Chiesa, F. Broggi, S. Piciaccia, R. Pluis, P. Umesh, J. F. Marques, W. Tittel, and J. A. Slater, “Deployed measurement-device independent quantum key distribution and Bell-state measurements coexisting with standard internet data and networking equipment,” \JournalTitleCommunications Physics 5, 186 (2022).
  25. R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” \JournalTitleNew Journal of Physics 17, 043027 (2015).
  26. J. C. Chapman, A. Miloshevsky, H.-H. Lu, N. Rao, M. Alshowkan, and N. A. Peters, “Two-mode squeezing over deployed fiber coexisting with conventional communications,” \JournalTitleOpt. Express 31, 26254–26275 (2023).
  27. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” \JournalTitlePhys. Rev. Lett. 70, 1895–1899 (1993).
  28. D. Collins, N. Gisin, and H. D. Riedmatten, “Quantum relays for long distance quantum cryptography,” \JournalTitleJournal of Modern Optics 52, 735–753 (2005).
  29. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,” \JournalTitlePhys. Rev. Lett. 81, 5932–5935 (1998).
  30. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” \JournalTitlePhys. Rev. Lett. 96, 010503 (2006).
  31. X.-M. Hu, Y. Guo, B.-H. Liu, C.-F. Li, and G.-C. Guo, “Progress in quantum teleportation,” \JournalTitleNature Reviews Physics 5, 339–353 (2023).
  32. O. Landry, J. A. W. van Houwelingen, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation over the swisscom telecommunication network,” \JournalTitleJ. Opt. Soc. Am. B 24, 398–403 (2007).
  33. R. Valivarthi, M. G. Puigibert, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “Quantum teleportation across a metropolitan fibre network,” \JournalTitleNature Photonics 10, 676–680 (2016).
  34. Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” \JournalTitleNature Photonics 10, 671–675 (2016).
  35. Q.-C. Sun, Y.-F. Jiang, Y.-L. Mao, L.-X. You, W. Zhang, W.-J. Zhang, X. Jiang, T.-Y. Chen, H. Li, Y.-D. Huang, X.-F. Chen, Z. Wang, J. Fan, Q. Zhang, and J.-W. Pan, “Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources,” \JournalTitleOptica 4, 1214 (2017).
  36. R. Valivarthi, S. I. Davis, C. Peña, S. Xie, N. Lauk, L. Narváez, J. P. Allmaras, A. D. Beyer, Y. Gim, M. Hussein, G. Iskander, H. L. Kim, B. Korzh, A. Mueller, M. Rominsky, M. Shaw, D. Tang, E. E. Wollman, C. Simon, P. Spentzouris, D. Oblak, N. Sinclair, and M. Spiropulu, “Teleportation systems toward a quantum internet,” \JournalTitlePRX Quantum 1, 020317 (2020).
  37. S. Shen, C. Yuan, Z. Zhang, H. Yu, R. Zhang, C. Yang, H. Li, Z. Wang, Y. Wang, G. Deng, H. Song, L. You, Y. Fan, G. Guo, and Q. Zhou, “Hertz-rate metropolitan quantum teleportation,” \JournalTitleLight: Science & Applications 12, 115 (2023).
  38. S. L. Braunstein and A. Mann, “Measurement of the bell operator and quantum teleportation,” \JournalTitlePhys. Rev. A 51, R1727–R1730 (1995).
  39. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” \JournalTitlePhys. Rev. Lett. 59, 2044–2046 (1987).
  40. S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ𝜒\chiitalic_χ(2) processes in a periodically poled linbo3 ridge waveguide,” \JournalTitleOpt. Express 19, 16032–16043 (2011).
  41. S. X. Wang and G. S. Kanter, “Robust multiwavelength all-fiber source of polarization-entangled photons with built-in analyzer alignment signal,” \JournalTitleIEEE Journal of Selected Topics in Quantum Electronics 15, 1733–1740 (2009).
  42. J. G. Rarity, “Interference of single photons from separate sources,” \JournalTitleAnnals of the New York Academy of Sciences 755, 624–631 (1995).
  43. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” \JournalTitlePhys. Rev. Lett. 76, 4656–4659 (1996).
  44. J. C. Chapman, J. M. Lukens, M. Alshowkan, N. Rao, B. T. Kirby, and N. A. Peters, “Coexistent quantum channel characterization using spectrally resolved bayesian quantum process tomography,” \JournalTitlePhys. Rev. Appl. 19, 044026 (2023).
  45. M. T. Liu and H. C. Lim, “Transmission of o-band wavelength-division-multiplexed heralded photons over a noise-corrupted optical fiber channel,” \JournalTitleOpt. Express 21, 30358–30369 (2013).
  46. M. Takeoka, R.-B. Jin, and M. Sasaki, “Full analysis of multi-photon pair effects in spontaneous parametric down conversion based photonic quantum information processing,” \JournalTitleNew Journal of Physics 17, 043030 (2015).
  47. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” \JournalTitlePhysical Review Letters 23, 880–884 (1969).
  48. H. Paul, “Interference between independent photons,” \JournalTitleRev. Mod. Phys. 58, 209–231 (1986).
  49. S. Massar and S. Popescu, “Optimal extraction of information from finite quantum ensembles,” \JournalTitlePhys. Rev. Lett. 74, 1259–1263 (1995).
  50. J. Altepeter, E. Jeffrey, and P. Kwiat, “Photonic state tomography,” (Academic Press, 2005), pp. 105–159.
  51. F. Basso Basset, F. Salusti, L. Schweickert, M. B. Rota, D. Tedeschi, S. F. Covre da Silva, E. Roccia, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, “Quantum teleportation with imperfect quantum dots,” \JournalTitlenpj Quantum Information 7, 7 (2021).
  52. M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, ““event-ready-detectors” bell experiment via entanglement swapping,” \JournalTitlePhys. Rev. Lett. 71, 4287–4290 (1993).
  53. I. A. Burenkov, A. Semionov, Hala, T. Gerrits, A. Rahmouni, D. Anand, Y.-S. Li-Baboud, O. Slattery, A. Battou, and S. V. Polyakov, “Synchronization and coexistence in quantum networks,” \JournalTitleOpt. Express 31, 11431–11446 (2023).
Citations (1)

Summary

  • The paper demonstrates quantum teleportation on a 30.2‐km optical fiber co‐carrying 400-Gbps classical signals using a Bell state measurement protocol.
  • It employs wavelength division multiplexing and narrow spectro-temporal filtering to mitigate spontaneous Raman scattering and maintain high quantum state fidelity.
  • The findings pave the way for integrating quantum networks with existing telecom systems, enabling scalable quantum communication alongside terabit-scale data rates.

Quantum Teleportation Coexisting with Classical Communications in Optical Fiber

The paper "Quantum teleportation coexisting with classical communications in optical fiber" presents notable advancements in the integration of quantum and classical communication within shared optical fiber infrastructure, specifically by achieving quantum teleportation in a context that simultaneously handles conventional data traffic. This research marks a meaningful development in the practical application of quantum networks by demonstrating their operation over existing telecom infrastructure, an essential step for scalable quantum network deployment.

Summary of Key Contributions

Experimental Setup and Methodology

The authors detail a pioneering demonstration of quantum teleportation conducted over a 30.2-kilometer fiber that is simultaneously carrying high-power 400-Gbps classical signals. Quantum state transfer is realized through a quantum teleportation protocol involving a Bell state measurement (BSM) at the midpoint of the fiber. The paper employs wavelength division multiplexing (WDM) to facilitate the coexistence of quantum and classical channels within the same infrastructure. To alleviate issues surrounding spontaneous Raman scattering (SpRS), which poses significant noise challenges to quantum signal detection, the quantum signals utilize optimal O-band channels combined with narrow spectro-temporal filtering.

Results and Performance

Through this setup, the authors demonstrate that quantum teleportation can maintain a high fidelity of state transfer, even in the presence of classical traffic with launch powers up to 18.7 dBm. This empowerment could feasibly support classical data rates aggregating to several terabits per second, confirming the robustness of this approach for contemporary high-data-rate environments.

The reported quantum teleportation process entails usage of heralded single photons for polarization-encoded qubits and evinces high Hong-Ou-Mandel (HOM) interference visibility, signifying low decoherence and high indistinguishability of quantum states despite co-propagation with conventional signals. This testifies to the effectiveness of the experimental design in preserving quantum coherence amidst noise from classical signal crosstalk.

Implications and Future Directions

Practically, this work indicates a path forward for integrating advanced quantum networking techniques, such as quantum repeaters and distributed quantum computing, within existing telecommunications setups. The successful teleportation over classical-fiber-carrying C-band data traffic projects substantial promise for near-term exploitation of current infrastructure in rolling out quantum communication technologies without new and exclusive fiber deployments.

On a theoretical level, the interplay between managing noise introduced from high-power classical signals and the preservation of quantum state fidelity remains paramount. While current approaches leverage O-band separation, the potential transition to C-band quantum channels—due to their lower loss in silica fibers—still requires innovative noise-suppression techniques and further exploration of high-dimensional entanglement to mitigate increased SpRS noise.

This research frames a compelling case for continuing to deepen the investigation into coexistent quantum and classical communication systems, driving forward the notion that the modernization of telecommunications may well accommodate the burgeoning needs of emergent quantum network applications. Future studies could focus on refining this integration approach further, particularly analyzing the benefits of engaging quantum memories, exploring different photon encoding schemes, and addressing the challenges of long-distance teleportation within such a dual-purpose infrastructure.

Youtube Logo Streamline Icon: https://streamlinehq.com