Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LAECIPS: Large Vision Model Assisted Adaptive Edge-Cloud Collaboration for IoT-based Perception System (2404.10498v1)

Published 16 Apr 2024 in cs.AI, cs.CV, and cs.DC

Abstract: Recent large vision models (e.g., SAM) enjoy great potential to facilitate intelligent perception with high accuracy. Yet, the resource constraints in the IoT environment tend to limit such large vision models to be locally deployed, incurring considerable inference latency thereby making it difficult to support real-time applications, such as autonomous driving and robotics. Edge-cloud collaboration with large-small model co-inference offers a promising approach to achieving high inference accuracy and low latency. However, existing edge-cloud collaboration methods are tightly coupled with the model architecture and cannot adapt to the dynamic data drifts in heterogeneous IoT environments. To address the issues, we propose LAECIPS, a new edge-cloud collaboration framework. In LAECIPS, both the large vision model on the cloud and the lightweight model on the edge are plug-and-play. We design an edge-cloud collaboration strategy based on hard input mining, optimized for both high accuracy and low latency. We propose to update the edge model and its collaboration strategy with the cloud under the supervision of the large vision model, so as to adapt to the dynamic IoT data streams. Theoretical analysis of LAECIPS proves its feasibility. Experiments conducted in a robotic semantic segmentation system using real-world datasets show that LAECIPS outperforms its state-of-the-art competitors in accuracy, latency, and communication overhead while having better adaptability to dynamic environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. A. Prakash, K. Chitta, and A. Geiger, “Multi-modal fusion transformer for end-to-end autonomous driving,” in CVPR 2021, 2021, pp. 7077–7087.
  2. J. T. Zhou, J. Du, H. Zhu, X. Peng, Y. Liu, and R. S. M. Goh, “Anomalynet: An anomaly detection network for video surveillance,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 10, pp. 2537–2550, 2019.
  3. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence: Paving the last mile of artificial intelligence with edge computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.
  4. M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, “Efficient acceleration of deep learning inference on resource-constrained edge devices: A review,” Proceedings of the IEEE, 2022.
  5. Y. Zhang, Y. Yao, P. Ram, P. Zhao, T. Chen, M. Hong, Y. Wang, and S. Liu, “Advancing model pruning via bi-level optimization,” Advances in Neural Information Processing Systems, vol. 35, pp. 18 309–18 326, 2022.
  6. M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying forgetting in classification tasks,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 7, pp. 3366–3385, 2021.
  7. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,” arXiv preprint arXiv:2304.02643, 2023.
  8. T. Chen, Z. Mai, R. Li, and W. lun Chao, “Segment anything model (sam) enhanced pseudo labels for weakly supervised semantic segmentation,” 2023.
  9. X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen, “Convergence of edge computing and deep learning: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 869–904, 2020.
  10. S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, and X. Shen, “Distributed artificial intelligence empowered by end-edge-cloud computing: A survey,” IEEE Communications Surveys & Tutorials, 2022.
  11. Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45, no. 1, pp. 615–629, 2017.
  12. A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: An efficient training and inference engine for intelligent mobile cloud computing services,” IEEE Transactions on Mobile Computing, vol. 20, no. 2, pp. 565–576, 2019.
  13. C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery for inference acceleration on the edge,” in IEEE INFOCOM 2019.   IEEE, 2019, pp. 1423–1431.
  14. H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “Ionn: Incremental offloading of neural network computations from mobile devices to edge servers,” in SoCC 2018, 2018, pp. 401–411.
  15. Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed adaptive deep learning inference on resource-constrained iot edge clusters,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.
  16. E. Park, D. Kim, S. Kim, Y.-D. Kim, G. Kim, S. Yoon, and S. Yoo, “Big/little deep neural network for ultra low power inference,” in CODES+ISSS 2015, 2015, pp. 124–132.
  17. U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier: Edge-caching for recognition applications,” in ICDCS 2017, 2017, pp. 276–286.
  18. S. Ding, L. Li, Z. Li, H. Wang, and Y. Zhang, “Smart electronic gastroscope system using a cloud–edge collaborative framework,” Future Generation Computer Systems, vol. 100, pp. 395–407, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167739X18324324
  19. M. Li, Y. Li, Y. Tian, L. Jiang, and Q. Xu, “Appealnet: An efficient and highly-accurate edge/cloud collaborative architecture for dnn inference,” in DAC 2021, 2021, pp. 409–414.
  20. C. Ding, A. Zhou, Y. Liu, R. N. Chang, C.-H. Hsu, and S. Wang, “A cloud-edge collaboration framework for cognitive service,” IEEE Transactions on Cloud Computing, vol. 10, no. 3, pp. 1489–1499, 2022.
  21. Z. Cao, Z. Li, Y. Chen, H. Pan, Y. Hu, and J. Liu, “Edge-cloud collaborated object detection via difficult-case discriminator,” in 2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS).   IEEE, 2023, pp. 259–270.
  22. A. Kouris, S. I. Venieris, S. Laskaridis, and N. Lane, “Multi-exit semantic segmentation networks,” in ECCV 2022.   Cham: Springer Nature Switzerland, 2022, pp. 330–349.
  23. D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-distribution examples in neural networks,” 2018.
  24. Y. Du, Z. Fu, Q. Liu, and Y. Wang, “Weakly supervised semantic segmentation by pixel-to-prototype contrast,” in CVPR 2022, June 2022, pp. 4320–4329.
  25. A. Shrivastava, A. Gupta, and R. Girshick, “Training region-based object detectors with online hard example mining,” in CVPR 2016, June 2016.
  26. H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” Traces and emergence of nonlinear programming, pp. 247–258, 2014.
  27. M. Mohri and A. Rostamizadeh, “Rademacher complexity bounds for non-i.i.d. processes,” in NIPS 2008, vol. 21.   Curran Associates, Inc., 2008.
  28. V. Koltchinskii and D. Panchenko, “Empirical margin distributions and bounding the generalization error of combined classifiers,” The Annals of Statistics, vol. 30, no. 1, pp. 1–50, 2002.
  29. G. DeSalvo, M. Mohri, and U. Syed, “Learning with deep cascades,” in Algorithmic Learning Theory: 26th International Conference, ALT 2015, Banff, AB, Canada, October 4-6, 2015, Proceedings 26.   Springer, 2015, pp. 254–269.
  30. Nvidia jetson nano. [Online]. Available: https://developer.nvidia.com/embedded/jetsonnano-developer-kit
  31. Kubeedge ianvs: Distributed synergy ai benchmarking. [Online]. Available: https://github.com/kubeedge/ianvs
  32. S. Hu, S. Mao, S. Luo, Z. Huang, Z. Zheng, J. Pu, and F. Wang, “Cloud robotics: a robotic semantic segmentation benchmark for lifelong learning,” [Online]. Available: https://kubeedge-ianvs.github.io/, 2023.
  33. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in CVPR 2016, 2016, pp. 3213–3223.
  34. B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene parsing through ade20k dataset,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 633–641.
  35. G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
  36. L. Sun, K. Yang, X. Hu, W. Hu, and K. Wang, “Real-time fusion network for rgb-d semantic segmentation incorporating unexpected obstacle detection for road-driving images,” IEEE robotics and automation letters, vol. 5, no. 4, pp. 5558–5565, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Shijing Hu (3 papers)
  2. Ruijun Deng (4 papers)
  3. Xin Du (72 papers)
  4. Zhihui Lu (11 papers)
  5. Qiang Duan (8 papers)
  6. Yi He (79 papers)
  7. Shih-Chia Huang (5 papers)
  8. Jie Wu (230 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com